NCP1203
www.onsemi.com
10
Power P1
Power P2
Power P3
Figure 17. Output Pulses at Various Power Levels (X = 5.0 ms/div) P1 t P2 t P3
Figure 18. The Skip Cycle Takes Place at Low Peak Currents which Guaranties NoiseFree Operation
315.40 882.70 1.450 M 2.017 M 2.585 M
300 M
200 M
100 M
0
MAX PEAK
CURRENT
SKIP CYCLE
CURRENT LIMIT
We recommend a pin 1 operation between 400 mV and
1.3 V that will fix the skip peak current level between
120 mV/Rsense and 390 mV/Rsense.
NonLatching Shutdown
In some cases, it might be desirable to shut off the part
temporarily and authorize its restart once the default has
disappeared. This option can easily be accomplished
through a single NPN bipolar transistor wired between FB
and ground. By pulling FB below the Adj pin 1 level, the
output pulses are disabled as long as FB is pulled below
pin 1. As soon as FB is relaxed, the IC resumes its operation.
Figure 19 depicts the application example.
NCP1203
www.onsemi.com
11
Figure 19. Another Way of Shutting Down the IC without a Definitive LatchOff State
ON/OFF
Q1
8
7
6
5
1
2
3
4
Full Latching Shutdown
Other applications require a full latching shutdown, e.g.
when an abnormal situation is detected (overtemperature or
overvoltage). This feature can easily be implemented
through two external transistors wired as a discrete SCR.
When the V
CC
level exceeds the zener breakdown voltage,
the NPN biases the PNP and fires the equivalent SCR,
permanently bringing down the FB pin. The switching
pulses are disabled until the user unplugs the power supply.
Figure 20. Two Bipolars Ensure a Total LatchOff of the SMPS in Presence of an OVP
LAux
NCP1203
CV
CC
Rhold
12 k
0.1 mF
10 k
10 k
8
7
6
5
1
2
3
4
OVP
Rhold ensures that the SCR stays on when fired. The bias
current flowing through Rhold should be small enough to let
the V
CC
ramp up (12.8 V) and down (4.9 V) when the SCR
is fired. The NPN base can also receive a signal from a
temperature sensor. Typical bipolars can be MMBT2222
and MMBT2907 for the discrete latch. The MMBT3946
features two bipolars NPN+PNP in the same package and
could also be used.
Protecting the Controller Against Negative Spikes
As with any controller built upon a CMOS technology, it
is the designers duty to avoid the presence of negative
spikes on sensitive pins. Negative signals have the bad habit
to forward bias the controller substrate and induce erratic
behaviors. Sometimes, the injection can be so strong that
internal parasitic SCRs are triggered, engendering
irremediable damages to the IC if they are a low impedance
path is offered between V
CC
and GND. If the current sense
pin is often the seat of such spurious signals, the
highvoltage pin can also be the source of problems in
certain circumstances. During the turnoff sequence, e.g.
when the user unplugs the power supply, the controller is
still fed by its V
CC
capacitor and keeps activating the
MOSFET ON and OFF with a peak current limited by
Rsense. Unfortunately, if the quality coefficient Q of the
resonating network formed by Lp and Cbulk is low (e.g. the
MOSFET Rdson + Rsense are small), conditions are met to
make the circuit resonate and thus negatively bias the
controller. Since we are talking about ms pulses, the amount
of injected charge (Q = I x t) immediately latches the
controller which brutally discharges its V
CC
capacitor. If this
V
CC
capacitor is of sufficient value, its stored energy
damages the controller. Figure 21 depicts a typical negative
shot occurring on the HV pin where the brutal V
CC
discharge
testifies for latchup.
NCP1203
www.onsemi.com
12
Figure 21. A negative spike takes place on the Bulk capacitor at the switchoff sequence
Simple and inexpensive cures exist to prevent from
internal parasitic SCR activation. One of them consists in
inserting a resistor in series with the highvoltage pin to
keep the negative current to the lowest when the bulk
becomes negative (Figure 22). Please note that the negative
spike is clamped to –2 x Vf due to the diode bridge. Also, the
power dissipation of this resistor is extremely small since it
only heats up during the startup sequence.
Another option (Figure 23) consists in wiring a diode from
V
CC
to the bulk capacitor to force V
CC
to reach UVLOlow
sooner and thus stops the switching activity before the bulk
capacitor gets deeply discharged. For security reasons, two
diodes can be connected in series.
Figure 22. A simple resistor in series avoids any
latchup in the controller
CV
CC
D3
1N4007
8
7
6
5
1
2
3
4
+
Cbulk
+
CV
CC
Rbulk
> 4.7 k
8
7
6
5
1
2
3
4
+
Cbulk
+
Figure 23. or a diode forces V
CC
to reach
UVLOlow sooner

NCP1203D40R2

Mfr. #:
Manufacturer:
ON Semiconductor
Description:
Switching Controllers 40KHz Current Mode
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union