AD9760
15
REV. B
Note, the clock input could also be driven via a sine wave that is
centered around the digital threshold (i.e., DVDD/2), and
meets the min/max logic threshold. This will typically result in a
slight degradation in the phase noise, that becomes more notice-
able at higher sampling rates and output frequencies. Also, at
higher sampling rates, the 20% tolerance of the digital logic
threshold should be considered since it will affect the effective
clock duty cycle and subsequently cut into the required data
setup and hold times.
SLEEP MODE OPERATION
The AD9760 has a power-down function that turns off the out-
put current and reduces the supply current to less than 8.5 mA
over the specified supply range of 2.7 V to 5.5 V and tempera-
ture range. This mode can be activated by applying a logic level
“1” to the SLEEP pin. This digital input also contains an active
pull-down circuit that ensures that the AD9760 remains enabled
if this input is left disconnected. The SLEEP input with active
pull-down requires <40 µA of drive current.
The power-up and power-down characteristics of the AD9760
are dependent upon the value of the compensation capacitor
connected to COMP1. With a nominal value of 0.1 µF, the
AD9760 takes less than 5 µs to power down and approximately
3.25 ms to power back up. Note, the SLEEP MODE should not
be used when the external control amplifier is used as shown in
Figure 45.
POWER DISSIPATION
The power dissipation, P
D
, of the AD9760 is dependent on
several factors that include: (1) AVDD and DVDD, the power
supply voltages; (2) I
OUTFS
, the full-scale current output; (3)
f
CLOCK
, the update rate; (4) and the reconstructed digital input
waveform. The power dissipation is directly proportional to the
analog supply current, I
AVDD
, and the digital supply current,
I
DVDD
. I
AVDD
is directly proportional to I
OUTFS
as shown in Fig-
ure 47 and is insensitive to f
CLOCK
.
I
OUTFS
mA
30
0
2204 6 8 10 12141618
25
20
15
10
5
I
AVDD
mA
Figure 47. I
AVDD
vs. I
OUTFS
Conversely, I
DVDD
is dependent on both the digital input wave-
form, f
CLOCK
, and digital supply DVDD. Figures 48 and 49
show I
DVDD
as a function of full-scale sine wave output ratios
(f
OUT
/f
CLOCK
) for various update rates with DVDD = 5 V and
DVDD = 3 V, respectively. Note how I
DVDD
is reduced by more
than a factor of 2 when DVDD is reduced from 5 V to 3 V.
RATIO (f
OUT
/f
CLK
)
18
16
0
0.01 10.1
I
DVDD
mA
8
6
4
2
12
10
14
5MSPS
25MSPS
50MSPS
100MSPS
125MSPS
Figure 48. I
DVDD
vs. Ratio @ DVDD = 5 V
RATIO (f
OUT
/f
CLK
)
8
0
0.01 10.1
I
DVDD
mA
6
4
2
5MSPS
25MSPS
50MSPS
100MSPS
125MSPS
Figure 49. I
DVDD
vs. Ratio @ DVDD = 3 V
AD9760
16
REV. B
APPLYING THE AD9760
OUTPUT CONFIGURATIONS
The following sections illustrate some typical output configura-
tions for the AD9760. Unless otherwise noted, it is assumed
that I
OUTFS
is set to a nominal 20 mA. For applications requir-
ing the optimum dynamic performance, a differential output
configuration is suggested. A differential output configuration
may consist of either an RF transformer or a differential op amp
configuration. The transformer configuration provides the opti-
mum high frequency performance and is recommended for any
application allowing for ac coupling. The differential op amp
configuration is suitable for applications requiring dc coupling, a
bipolar output, signal gain and/or level shifting.
A single-ended output is suitable for applications requiring a
unipolar voltage output. A positive unipolar output voltage will
result if I
OUTA
and/or I
OUTB
is connected to an appropriately
sized load resistor, R
LOAD
, referred to ACOM. This configura-
tion may be more suitable for a single-supply system requiring
a dc coupled, ground referred output voltage. Alternatively, an
amplifier could be configured as an I-V converter, thus convert-
ing I
OUTA
or I
OUTB
into a negative unipolar voltage. This con-
figuration provides the best dc linearity since I
OUTA
or I
OUTB
is
maintained at a virtual ground. Note that I
OUTA
provides slightly
better performance than I
OUTB
.
DIFFERENTIAL COUPLING USING A TRANSFORMER
An RF transformer can be used to perform a differential-to-
single-ended signal conversion as shown in Figure 50. A
differentially coupled transformer output provides the optimum
distortion performance for output signals whose spectral content
lies within the transformer’s passband. An RF transformer such
as the Mini-Circuits T1-1T provides excellent rejection of com-
mon-mode distortion (i.e., even-order harmonics) and noise
over a wide frequency range. It also provides electrical isolation
and the ability to deliver twice the power to the load. Trans-
formers with different impedance ratios may also be used for
impedance matching purposes. Note that the transformer
provides ac coupling only.
R
LOAD
AD9760
22
21
MINI-CIRCUITS
T1-1T
OPTIONAL R
DIFF
I
OUTA
I
OUTB
Figure 50. Differential Output Using a Transformer
The center tap on the primary side of the transformer must be
connected to ACOM to provide the necessary dc current path
for both I
OUTA
and I
OUTB
. The complementary voltages appear-
ing at I
OUTA
and I
OUTB
(i.e., V
OUTA
and V
OUTB
) swing symmetri-
cally around ACOM and should be maintained with the specified
output compliance range of the AD9760. A differential resistor,
R
DIFF
, may be inserted in applications where the output of the
transformer is connected to the load, R
LOAD
, via a passive re-
construction filter or cable. R
DIFF
is determined by the
transformer’s impedance ratio and provides the proper source
termination that results in a low VSWR. Note that approxi-
mately half the signal power will be dissipated across R
DIFF
.
DIFFERENTIAL USING AN OP AMP
An op amp can also be used to perform a differential to single-
ended conversion as shown in Figure 51. The AD9760 is con-
figured with two equal load resistors, R
LOAD
, of 25 . The
differential voltage developed across I
OUTA
and I
OUTB
is con-
verted to a single-ended signal via the differential op amp con-
figuration. An optional capacitor can be installed across I
OUTA
and I
OUTB
, forming a real pole in a low-pass filter. The addition
of this capacitor also enhances the op amps distortion perfor-
mance by preventing the DACs high slewing output from over-
loading the op amp’s input.
AD9760
22
I
OUTA
I
OUTB
21
C
OPT
500
225
225
500
2525
AD8047
Figure 51. DC Differential Coupling Using an Op Amp
The common-mode rejection of this configuration is typically
determined by the resistor matching. In this circuit, the differ-
ential op amp circuit using the AD8047 is configured to provide
some additional signal gain. The op amp must operate off of a
dual supply since its output is approximately ±1.0 V. A high
speed amplifier capable of preserving the differential perfor-
mance of the AD9760 while meeting other system level objec-
tives (i.e., cost, power) should be selected. The op amps
differential gain, its gain setting resistor values, and full-scale
output swing capabilities should all be considered when opti-
mizing this circuit.
The differential circuit shown in Figure 52 provides the neces-
sary level-shifting required in a single supply system. In this
case, AVDD which is the positive analog supply for both the
AD9760 and the op amp is also used to level-shift the differ-
ential output of the AD9760 to midsupply (i.e., AVDD/2). The
AD8041 is a suitable op amp for this application.
AD9760
22
I
OUTA
I
OUTB
21
C
OPT
500
225
225
1k
2525
AD8041
1k
AVDD
Figure 52. Single-Supply DC Differential Coupled Circuit
SINGLE-ENDED UNBUFFERED VOLTAGE OUTPUT
Figure 53 shows the AD9760 configured to provide a unipolar
output range of approximately 0 V to +0.5 V for a doubly termi-
nated 50 cable since the nominal full-scale current, I
OUTFS
, of
20 mA flows through the equivalent R
LOAD
of 25 . In this case,
R
LOAD
represents the equivalent load resistance seen by I
OUTA
or
I
OUTB
. The unused output (I
OUTA
or I
OUTB
) can be connected
to ACOM directly or via a matching R
LOAD
. Different values of
AD9760
17
REV. B
I
OUTFS
and R
LOAD
can be selected as long as the positive compli-
ance range is adhered to. One additional consideration in this
mode is the integral nonlinearity (INL) as discussed in the Ana-
log Output section of this data sheet. For optimum INL perfor-
mance, the single-ended, buffered voltage output configuration
is suggested.
AD9760
I
OUTA
I
OUTB
21
50
25
50
V
OUTA
= 0 TO +0.5V
I
OUTFS
= 20mA
22
Figure 53. 0 V to +0.5 V Unbuffered Voltage Output
SINGLE-ENDED, BUFFERED VOLTAGE OUTPUT
CONFIGURATION
Figure 54 shows a buffered single-ended output configuration
in which the op amp U1 performs an I-V conversion on the
AD9760 output current. U1 maintains I
OUTA
(or I
OUTB
) at a
virtual ground, thus minimizing the nonlinear output impedance
effect on the DAC’s INL performance as discussed in the Ana-
log Output section. Although this single-ended configuration
typically provides the best dc linearity performance, its ac distor-
tion performance at higher DAC update rates may be limited by
U1’s slewing capabilities. U1 provides a negative unipolar out-
put voltage and its full-scale output voltage is simply the product
of R
FB
and I
OUTFS
. The full-scale output should be set within
U1’s voltage output swing capabilities by scaling I
OUTFS
and/or
R
FB
. An improvement in ac distortion performance may result
with a reduced I
OUTFS
since the signal current U1 will be required
to sink will be subsequently reduced.
AD9760
22
I
OUTA
I
OUTB
21
C
OPT
200
U1
V
OUT
= I
OUTFS
R
FB
I
OUTFS
= 10mA
R
FB
200
Figure 54. Unipolar Buffered Voltage Output
POWER AND GROUNDING CONSIDERATIONS
In systems seeking to simultaneously achieve high speed and
high performance, the implementation and construction of the
printed circuit board design is often as important as the circuit
design. Proper RF techniques must be used in device selection,
placement and routing, and supply bypassing and grounding.
The evaluation board for the AD9760, which uses a four-layer
PC board, serves as a good example for the above-mentioned
considerations. Figures 60–65 illustrate the recommended
printed circuit board ground, power and signal plane layouts
that are implemented on the AD9760 evaluation board.
Proper grounding and decoupling should be a primary objective
in any high speed, high resolution system. The AD9760 features
separate analog and digital supply and ground pins to optimize
the management of analog and digital ground currents in a
system. In general, AVDD, the analog supply, should be de-
coupled to ACOM, the analog common, as close to the chip as
physically possible. Similarly, DVDD, the digital supply, should
be decoupled to DCOM as close as physically possible.
For those applications that require a single +5 V or +3 V supply
for both the analog and digital supply, a clean analog supply
may be generated using the circuit shown in Figure 55. The
circuit consists of a differential LC filter with separate power
supply and return lines. Lower noise can be attained using low
ESR type electrolytic and tantalum capacitors.
100F
ELECT.
10-22F
TANT.
0.1F
CER.
TTL/CMOS
LOGIC
CIRCUITS
+5V OR +3V
POWER SUPPLY
FERRITE
BEADS
AVDD
ACOM
Figure 55. Differential LC Filter for Single +5 V or +3 V
Applications
Maintaining low noise on power supplies and ground is critical
to obtain optimum results from the AD9760. If properly imple-
mented, ground planes can perform a host of functions on high
speed circuit boards: bypassing, shielding, current transport,
etc. In mixed signal design, the analog and digital portions of
the board should be distinct from each other, with the analog
ground plane confined to the areas covering the analog signal
traces, and the digital ground plane confined areas covering the
digital interconnects.
All analog ground pins of the DAC, reference and other analog
components should be tied directly to the analog ground plane.
The two ground planes should be connected by a path 1/8 to
1/4 inch wide underneath or within 1/2 inch of the DAC to
maintain optimum performance. Care should be taken to ensure
that the ground plane is uninterrupted over crucial signal paths.
On the digital side, this includes the digital input lines running
to the DAC as well as any clock signals. On the analog side, this
includes the DAC output signal, reference signal and the supply
feeders.
The use of wide runs or planes in the routing of power lines is
also recommended. This serves the dual role of providing a low
series impedance power supply to the part and providing some
“free” capacitive decoupling to the appropriate ground plane. It
is essential that care be taken in the layout of signal and power
ground interconnects to avoid inducing extraneous voltage
drops in the signal ground paths. It is recommended that all
connections be short, direct and as physically close to the pack-
age as possible to minimize the sharing of conduction paths
between different currents. When runs exceed an inch in length,
strip line techniques with proper termination resistor should be
considered. The necessity and value of this resistor will be de-
pendent upon the logic family used.
For a more detailed discussion of the implementation and con-
struction of high speed, mixed signal printed circuit boards,
refer to Analog Devices’ application notes AN-280 and AN-333.

AD9760ARUZ50

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Digital to Analog Converters - DAC 10-Bit 100 MSPS
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union