4
LTC1599
sn1599 1599fs
TYPICAL PERFOR A CE CHARACTERISTICS
UW
Unipolar Multiplying Mode
Signal-to-(Noise + Distortion)
vs Frequency
Full-Scale Settling Waveform
Midscale Glitch Impulse
TIME (µs)
0
OUTPUT VOLTAGE (mV)
–10
0
10
0.6
1.0
1599 G01
–20
–30
–40
0.2 0.4 0.8
20
30
40
USING AN LT1468
C
FEEDBACK
= 30pF
V
REF
= 10V
1.5nV-s TYPICAL
FREQUENCY (Hz)
–90
SIGNAL/(NOISE + DISTORTION) (dB)
–70
–50
–40
10 1k 10k 100k
1599 G03
110
100
–60
–80
100
V
CC
= 5V USING AN LT1468
C
FEEDBACK
= 30pF
R
L
= 600
REFERENCE = 6V
RMS
500kHz FILTER
80kHz FILTER
30kHz FILTER
LD PULSE
5V/DIV
GATED
SETTLING
WAVEFORM
500µV/DIV
500ns/DIV
1599 G02
USING LT1468 OP AMP
C
FEEDBACK
= 20pF
0V to 10V STEP
Bipolar Multiplying Mode
Signal-to-(Noise + Distortion)
vs Frequency, Code = All Zeros
FREQUENCY (Hz)
–90
SIGNAL/(NOISE + DISTORTION) (dB)
–70
–50
–40
10 1k 10k 100k
1599 G04
110
100
–60
–80
100
V
CC
= 5V USING TWO LT1468s
C
FEEDBACK
= 15pF
R
L
= 600
REFERENCE = 6V
RMS
500kHz FILTER
80kHz FILTER
30kHz
FILTER
FREQUENCY (Hz)
–90
SIGNAL/(NOISE + DISTORTION) (dB)
–70
–50
–40
10 1k 10k 100k
1599 G05
110
100
–60
–80
100
V
CC
= 5V USING TWO LT1468s
C
FEEDBACK
= 15pF
R
L
= 600
REFERENCE = 6V
RMS
500kHz FILTER
80kHz FILTER
30kHz FILTER
INTPUT VOLTAGE (V)
0
SUPPLY CURRENT (mA)
3
4
5
4
1599 G06
2
1
0
1
2
3
5
V
CC
= 5V
ALL DIGITAL INPUTS
TIED TOGETHER
Bipolar Multiplying Mode
Signal-to-(Noise + Distortion)
vs Frequency, Code = All Ones Supply Current vs Input Voltage
Logic Threshold vs Supply Voltage
SUPPLY VOLTAGE (V)
0
0
LOGIC THRESHOLD (V)
0.5
1.0
1.5
2.0
3.0
1
234
1599 G07
576
2.5
Integral Nonlinearity (INL)
DIGITAL INPUT CODE
0
1.0
INTEGRAL NONLINEARITY (LSB)
0.8
0.4
0.2
0
1.0
0.4
16384
32768
1599 G08
0.6
0.6
0.8
0.2
49152
65535
Differential Nonlinearity (DNL)
DIGITAL INPUT CODE
0
1.0
DIFFERENTIAL NONLINEARITY (LSB)
0.8
0.4
0.2
0
1.0
0.4
16384
32768
1598 G09
0.6
0.6
0.8
0.2
49152
65535
5
LTC1599
sn1599 1599fs
TYPICAL PERFOR A CE CHARACTERISTICS
UW
Integral Nonlinearity
vs Reference Voltage
in Unipolar Mode
REFERENCE VOLTAGE (V)
–10
INTEGRAL NONLINEARITY (LSB)
0.2
0.6
1.0
6
1599 G10
0.2
0.6
0
0.4
0.8
0.4
0.8
1.0
–6
–2
2
–8 8
–4
0
4
10
REFERENCE VOLTAGE (V)
–10
INTEGRAL NONLINEARITY (LSB)
0.2
0.6
1.0
6
1599 G11
0.2
0.6
0
0.4
0.8
0.4
0.8
1.0
–6
–2
2
–8 8
–4
0
4
10
REFERENCE VOLTAGE (V)
–10
DIFFERENTIAL NONLINEARITY (LSB)
0.2
0.6
1.0
6
1599 G12
0.2
0.6
0
0.4
0.8
0.4
0.8
1.0
–6
–2
2
–8 8
–4
0
4
10
Integral Nonlinearity
vs Reference Voltage
in Bipolar Mode
Differential Nonlinearity
vs Reference Voltage
in Unipolar Mode
Differential Nonlinearity
vs Reference Voltage
in Bipolar Mode
REFERENCE VOLTAGE (V)
–10
DIFFERENTIAL NONLINEARITY (LSB)
0.2
0.6
1.0
6
1599 G13
0.2
0.6
0
0.4
0.8
0.4
0.8
1.0
–6
–2
2
–8 8
–4
0
4
10
SUPPLY VOLTAGE (V)
1.0
INTEGRAL NONLINEARITY (LSB)
0.8
0.4
0.2
0
1.0
0.4
2
4
5
1599 G14
0.6
0.6
0.8
0.2
3
6
7
V
REF
= 10V
V
REF
= 10V
V
REF
= 2.5V
V
REF
= 2.5V
Integral Nonlinearity vs
Suppy Voltage in Unipolar Mode
Integral Nonlinearity vs
Suppy Voltage in Bipolar Mode
SUPPLY VOLTAGE (V)
INTEGRAL NONLINEARITY (LSB)
2.0
–1.0
0.5
0
2.0
1.0
2
4
5
1599 G15
–1.5
1.5
0.5
3
6
7
V
REF
= 10V
V
REF
= 10V
V
REF
= 2.5V
V
REF
= 2.5V
Differential Nonlinearity vs
Suppy Voltage in Unipolar Mode
SUPPLY VOLTAGE (V)
1.0
DIFFERENTIAL NONLINEARITY (LSB)
0.8
0.4
0.2
0
1.0
0.4
2
4
5
1599 G16
0.6
0.6
0.8
0.2
3
6
7
V
REF
= 10V
V
REF
= 2.5V
V
REF
= 10V
V
REF
= 2.5V
6
LTC1599
sn1599 1599fs
Differential Nonlinearity vs
Supply Voltage in Bipolar Mode
TYPICAL PERFOR A CE CHARACTERISTICS
UW
SUPPLY VOLTAGE (V)
1.0
DIFFERENTIAL NONLINEARITY (LSB)
0.8
0.4
0.2
0
1.0
0.4
2
4
5
1599 G17
0.6
0.6
0.8
0.2
3
6
7
V
REF
= 10V
V
REF
= 10V
V
REF
= 2.5V
V
REF
= 2.5V
FREQUENCY (Hz)
100
120
ATTENUATION (dB)
–80
–40
0
100 10k 100k 10M
1599 G18
1k 1M
–20
–60
D15 ON
D14 ON
D13 ON
D12 ON
ALL BITS ON
D9 ON
D1 ON
D0 ON
+
30pF
43215
7
8, 9, 19
6
LT1468
LTC1599
V
OUT
V
REF
D11 ON
D10 ON
D8 ON
D7 ON
D6 ON
D5 ON
D4 ON
D3 ON
D2 ON
ALL BITS OFF
Unipolar Multiplying Mode Frequency
Response vs Digital Code
Bipolar Multiplying Mode Frequency
Response vs Digital Code
Bipolar Multiplying Mode Frequency
Response vs Digital Code
FREQUENCY (Hz)
100
ATTENUATION (dB)
–80
–40
0
10
*DAC ZERO VOLTAGE OUTPUT LIMITED BY BIPOLAR
ZERO ERROR TO –96dB TYPICAL (–78dB MAX, A GRADE)
1k 10k 10M1M
1599 G19
100 100k
–20
–60
D15 AND D14 ON
D15 AND D13 ON
D15 AND D12 ON
D15 AND D11 ON
D15 AND D10 ON
D15 AND D9 ON
D15 AND D8 ON
D15 AND D7 ON
D15 AND D6 ON
D15 AND D5 ON
D15 AND D4 ON
D15 AND D3 ON
D15 AND D2 ON
ALL BITS ON
15pF
12pF
+
+
12pF
V
REF
V
OUT
23451
7
8, 9, 19
6
LT1468
LT1468
LTC1599
D15 ON
*
D15 AND D0 ON
D15 AND D1 ON
CODES FROM
MIDSCALE
TO FULL SCALE
FREQUENCY (Hz)
100
ATTENUATION (dB)
–80
–40
0
10 1k 10k 10M1M
1599 G20
100 100k
–20
–60
D14 ON
D14 AND D13 ON
D14 TO D12 ON
D14 TO D11 ON
D14 TO D10 ON
D14 TO D9 ON
D14 TO D8 ON
D14 TO D7 ON
D14 TO D6 ON
D14 TO D5 ON
D14 TO D4 ON
D14 TO D3 ON
D14 TO D2 ON
D14 TO D1 ON
ALL BITS OFF
*DAC ZERO VOLTAGE OUTPUT LIMITED BY BIPOLAR
ZERO ERROR TO –96dB TYPICAL (–78dB MAX, A GRADE)
15pF
12pF
+
+
12pF
V
REF
V
OUT
21345
7
8, 9, 19
6
LT1468
LT1468
LTC1599
D14 TO D0 ON
D15 ON
*
CODES FROM
MIDSCALE
TO ZERO SCALE

LTC1599ACG#TRPBF

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Digital to Analog Converters - DAC Parallel Input 16-Bit DAC w/Quad resistors
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union