MC33502
http://onsemi.com
10
0
1.0
2.0
3.0
4.0
5.0
−25 0 25 50 75 100 125
T
A
, AMBIENT TEMPERATURE (°C)
−55
0
20
40
60
−20
−40
1.0 M 10 M
f, FREQUENCY (Hz)
10 k 100 k
Figure 21. Slew Rate versus Temperature
−55 −25 0 25 50 75 100 125
T
A
, AMBIENT TEMPERATURE (°C)
0
1.0
2.0
3.0
4.0
V
CC
− V
EE
= 5.0 V
+ Slew Rate
−25 0 25 50 75 100 125−55
0
20
40
0
20
40
60
80
100
60
80
100
V
CC
− V
EE
= 5.0 V
R
L
= 600 W
C
L
= 100 pF
10 1.0 k 1.0 M100 100 k10 k
0
20
40
60
70
R
T
, DIFFERENTIAL SOURCE RESISTANCE (W)
Phase Margin
Gain Margin
C
L
, CAPACITIVE LOAD (pF)
3.0 10 100 1000 300030 300
0
10
20
50
60
30
40
V
CC
− V
EE
= 1.0 V
+ Slew Rate
V
CC
− V
EE
= 1.0 V
− Slew Rate
V
CC
− V
EE
= 5.0 V
− Slew Rate
SR, SLEW RATE (V/ s)μ
V
CC
− V
EE
= 5.0 V
f = 100 kHz
GBW, GAIN BANDWIDTH PRODUCT (MHz)
V
CC
− V
EE
= 1.0 V
V
CC
− V
EE
= 5.0 V
V
CC
− V
EE
= 5.0 V
V
CC
− V
EE
= 1.0 V
R
L
= 600 W
C
L
= 0
T
A
= 25°C
0
20
40
60
70
Phase Margin
Gain Margin
T
A
, AMBIENT TEMPERATURE (°C)
A
V
, GAIN MARGIN (dB)
V
CC
− V
EE
= 5.0 V
R
L
= 600 W
C
L
= 100 pF
T
A
= 25°C
0
10
20
50
60
30
40
A
V
, GAIN MARGIN (dB)
Figure 22. Gain Bandwidth Product
versus Temperature
Figure 23. Voltage Gain and Phase
versus Frequency
Figure 24. Gain and Phase Margin
versus Temperature
Figure 25. Gain and Phase Margin versus
Differential Source Resistance
Figure 26. Feedback Loop Gain and Phase
versus Capacitive Load
V
CC
− V
EE
= 5.0 V
R
L
= 600 W
T
A
= 25°C
50
30
10
Phase Margin
Gain Margin
10
30
50
A
VOL
, GAIN (dB)
Φ
m,
PHASE MARGIN (°)
Φ
m,
PHASE MARGIN (°)
Φ
m,
PHASE MARGIN (°)
A
V
GAIN MARGIN (dB)
MC33502
http://onsemi.com
11
Φ
m,
PHASE MARGIN (°)
1234567
V
CC
− V
EE
, SUPPLY VOLTAGE (V)
0
0
20
40
20
40
60
80
100
60
80
100
Phase Margin
Gain Margin
R
L
= 600 W
C
L
= 0
T
A
= 25°C
10 1.0 k100 100 k
10
20
30
40
50
60
70
10 k
f, FREQUENCY (Hz)
V
CC
− V
EE
= 5.0 V
T
A
= 25°C
−55 −25 0 25 50 75 100 125
0
0.4
0.8
1.2
1.6
A
VOL
10 dB
R
L
= 600 W
V
CC
− V
EE
, SUPPLY VOLTAGE (V)
0 1.0 2.0 3.0 4.0
0
20
40
60
120
5.0 6.0
R
L
= 600 W
T
A
= 25°C
80
100
V
CC
, |V
EE
|, SUPPLY VOLTAGE (V)
0 ±0.5 ±1.0 ±1.5 ±2.0 ±2.5 ±3.0 ±3.5
0
2.0
4.0
6.0
8.0
R
L
= 600 W
T
A
= 25°C
Figure 27. Channel Separation
versus Frequency
30 100 10 k 100 k 300 k300 30 k
A
V
= 100
0
20
40
100
120
60
80
V
CC
− V
EE
= 5.0 V
R
L
= 600 W
V
O
= 4.0 V
pp
T
A
= 25°C
f, FREQUENCY (Hz)
A
V
= 10
CS, CHANNEL SEPARATION (dB)
0
en, EQUIVALENT INPUT NOISE VOLTAGE (nV/ Hz)
0
T
A
, AMBIENT TEMPERATURE (°C)
Figure 28. Output Voltage Swing
versus Supply Voltage
Figure 29. Equivalent Input Noise Voltage
versus Frequency
Figure 30. Gain and Phase Margin
versus Supply Voltage
Figure 31. Useable Supply Voltage
versus Temperature
Figure 32. Open Loop Gain
versus Supply Voltage
V
O
, OUTPUT VOLTAGE (V
pp
)
V
CC
−V
EE
, USEABLE SUPPLY VOLTAGE (V)
A
VOL,
OPEN LOOP GAIN (dB)
A
V
, GAIN MARGIN (dB)
MC33502
http://onsemi.com
12
R
1
10 k
R
f
100 k
R
2
10 k
C
f
400 pF
0.5 V
−0.5 V
C
1
80 nF
V
O
A
f
f
L
Figure 33. 1.0 V Oscillator
Figure 34. 1.0 V Voiceband Filter
f
L
+
1
2 p R
1
C
1
[ 200 Hz
f
H
+
1
2 p R
f
C
f
[ 4.0 kHz
A
f
+ 1 )
R
f
R
2
+ 11
+
f
H
R
T
470 k
R
2
470 k
R
1b
470 k
R
1a
470 k
C
T
1.0 nF
1.0 V
f
O
1.0 kHz
1.0 V
pp
+
f
O
+
1
R
T
C
T
In
ƪ
2(R
1a
) R
1b
)
R
2
ƫ
V
CC

MC33502DR2G

Mfr. #:
Manufacturer:
ON Semiconductor
Description:
Operational Amplifiers - Op Amps 1-7V Dual Rail to Rail -40 to 105 Cel
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet