MAX186/MAX188
single-ended unipolar conversions on CH7 in external
clock mode without powering down between conver-
sions. In external clock mode, the SSTRB output pulses
high for one clock period before the most significant bit
of the 12-bit conversion result comes out of DOUT.
Varying the analog input to CH7 should alter the
sequence of bits from DOUT. A total of 15 clock cycles
is required per conversion. All transitions of the SSTRB
and DOUT outputs occur on the falling edge of SCLK.
How to Start a Conversion
A conversion is started on the MAX186/MAX188 by
clocking a control byte into DIN. Each rising edge on
SCLK, with CS low, clocks a bit from DIN into the
MAX186/MAX188’s internal shift register. After CS falls,
the first arriving logic “1” bit defines the MSB of the
control byte. Until this first “start” bit arrives, any num-
ber of logic “0” bits can be clocked into DIN with no
effect. Table 2 shows the control-byte format.
The MAX186/MAX188 are fully compatible with
Microwire and SPI devices. For SPI, select the correct
clock polarity and sampling edge in the SPI control reg-
isters: set CPOL = 0 and CPHA = 0. Microwire and SPI
both transmit a byte and receive a byte at the same
time. Using the
Typical Operating Circuit
, the simplest
software interface requires only three 8-bit transfers to
perform a conversion (one 8-bit transfer to configure
the ADC, and two more 8-bit transfers to clock out the
12-bit conversion result).
Example: Simple Software Interface
Make sure the CPU’s serial interface runs in master
mode so the CPU generates the serial clock. Choose a
clock frequency from 100kHz to 2MHz.
1) Set up the control byte for external clock mode, call
it TB1. TB1 should be of the format: 1XXXXX11
Binary, where the Xs denote the particular channel
and conversion-mode selected.
Low-Power, 8-Channel,
Serial 12-Bit ADCs
10 ______________________________________________________________________________________
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
(MSB) (LSB)
START SEL2 SEL1 SEL0 UNI/BIP SGL/DIF PD1 PD0
Bit Name Description
7(MSB) START The first logic “1” bit after CS goes low defines the beginning of the control byte.
6 SEL2 These three bits select which of the eight channels are used for the conversion.
5 SEL1 See Tables 3 and 4.
4 SEL0
3 UNI/BIP 1 = unipolar, 0 = bipolar. Selects unipolar or bipolar conversion mode. In unipolar
mode, an analog input signal from 0V to VREF can be converted; in bipolar mode, the
signal can range from -VREF/2 to +VREF/2.
2 SGL/DIF 1 = single ended, 0 = differential. Selects single-ended or differential conversions. In
single-ended mode, input signal voltages are referred to AGND. In differential mode,
the voltage difference between two channels is measured. See Tables 3 and 4.
1 PD1 Selects clock and power-down modes.
0(LSB) PD0 PD1 PD0 Mode
00Full power-down (I
Q
= 2µA)
01Fast power-down (I
Q
= 30µA)
10Internal clock mode
1 1 External clock mode
Table 2. Control-Byte Format
2) Use a general-purpose I/O line on the CPU to pull
CS on the MAX186/MAX188 low.
3) Transmit TB1 and simultaneously receive a byte
and call it RB1. Ignore RB1.
4) Transmit a byte of all zeros ($00 HEX) and simulta-
neously receive byte RB2.
5) Transmit a byte of all zeros ($00 HEX) and simulta-
neously receive byte RB3.
6) Pull CS on the MAX186/MAX188 high.
Figure 6 shows the timing for this sequence. Bytes RB2
and RB3 will contain the result of the conversion
padded with one leading zero and three trailing zeros.
The total conversion time is a function of the serial
clock frequency and the amount of dead time between
8-bit transfers. Make sure that the total conversion time
does not exceed 120µs, to avoid excessive T/H droop.
Digital Output
In unipolar input mode, the output is straight binary
(see Figure 15). For bipolar inputs, the output is
twos-complement (see Figure 16). Data is clocked out
at the falling edge of SCLK in MSB-first format.
MAX186/MAX188
Low-Power, 8-Channel,
Serial 12-Bit ADCs
______________________________________________________________________________________ 11
SEL2 SEL1 SEL0 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 AGND
00 0 +
10 0 +
00 1 +
10 1 +
01 0 +
11 0 +
01 1 +
11 1 +
Table 3. Channel Selection in Single-Ended Mode (SGL/ = 1)
SEL2 SEL1 SEL0 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7
00 0 +
00 1 +
01 0 +
01 1 +–
10 0 +
10 1 +
11 0 +
11 1 –+
Table 4. Channel Selection in Differential Mode (SGL/ = 0)
MAX186/MAX188
Internal and External Clock Modes
The MAX186/MAX188 may use either an external serial
clock or the internal clock to perform the
successive-approximation conversion. In both clock
modes, the external clock shifts data in and out of the
MAX186/MAX188. The T/H acquires the input signal as
the last three bits of the control byte are clocked into
DIN. Bits PD1 and PD0 of the control byte program the
clock mode. Figures 7 through 10 show the timing
characteristics common to both modes.
External Clock
In external clock mode, the external clock not only shifts
data in and out, it also drives the analog-to-digital con-
version steps. SSTRB pulses high for one clock period
after the last bit of the control byte. Successive-approxi-
mation bit decisions are made and appear at DOUT on
each of the next 12 SCLK falling edges (see Figure 6).
SSTRB and DOUT go into a high-impedance state when
CS goes high; after the next CS falling edge, SSTRB will
output a logic low. Figure 8 shows the SSTRB timing in
external clock mode.
The conversion must complete in some minimum time, or
else droop on the sample-and-hold capacitors may
degrade conversion results. Use internal clock mode if the
clock period exceeds 10µs, or if serial-clock interruptions
could cause the conversion interval to exceed 120µs.
Low-Power, 8-Channel,
Serial 12-Bit ADCs
12 ______________________________________________________________________________________
SSTRB
CS
SCLK
DIN
DOUT
14 8 12 16 20 24
START
SEL2 SEL1 SEL0
UNI/
BIP
SCL/
DIFF
PD1 PD0
B11
MSB
B10 B9 B8 B7 B6 B5 B4 B3 B2 B1
B0
LSB
ACQUISITION
1.5µs (CLK = 2MHz)
IDLE
FILLED WITH 
ZEROS
IDLE
CONVERSION
t
ACQ
A/D STATE
RB1
RB2
RB3
• • •
• • •
• • •
• • •
CS
SCLK
DIN
DOUT
t
CSH
t
CSS
t
CL
t
DS
t
DH
t
DV
t
CH
t
DO
t
TR
t
CSH
Figure 6. 24-Bit External Clock Mode Conversion Timing (SPI, QSPI and Microwire Compatible)
Figure 7. Detailed Serial-Interface Timing

MAX188DCWP+

Mfr. #:
Manufacturer:
Maxim Integrated
Description:
Analog to Digital Converters - ADC 12-Bit 8Ch 133ksps 5.25V Precision ADC
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union