10
LT1963 Series
1963fc
ADJ: Adjust. For the adjustable LT1963, this is the input to
the error amplifier. This pin is internally clamped to ±7V.
It has a bias current of 3µA which flows into the pin. The
ADJ pin voltage is 1.21V referenced to ground and the
output voltage range is 1.21V to 20V.
SHDN: Shutdown. The SHDN pin is used to put the LT1963
regulators into a low power shutdown state. The output
will be off when the SHDN pin is pulled low. The SHDN pin
can be driven either by 5V logic or open-collector logic
with a pull-up resistor. The pull-up resistor is required to
supply the pull-up current of the open-collector gate,
normally several microamperes, and the SHDN pin cur-
rent, typically 3µA. If unused, the SHDN pin must be
connected to V
IN
. The device will be in the low power
shutdown state if the SHDN pin is not connected.
IN: Input. Power is supplied to the device through the IN
pin. A bypass capacitor is required on this pin if the device
is more than six inches away from the main input filter
capacitor. In general, the output impedance of a battery
rises with frequency, so it is advisable to include a bypass
capacitor in battery-powered circuits. A bypass capacitor
in the range of 1µF to 10µF is sufficient. The LT1963 regu-
lators are designed to withstand reverse voltages on the IN
pin with respect to ground and the OUT pin. In the case of
a reverse input, which can happen if a battery is plugged
in backwards, the device will act as if there is a diode in
series with its input. There will be no reverse current flow
into the regulator and no reverse voltage will appear at the
load. The device will protect both itself and the load.
Exposed Pad: GND. The Exposed Pad (FE Package) is
ground and must be soldered to the PCB for rated thermal
performance.Figure 1. Kelvin Sense Connection
IN
SHDN
1963 F01
R
P
OUT
V
IN
SENSE
GND
LT1963
R
P
+
+
LOAD
UU
U
PI FU CTIO S
OUT: Output. The output supplies power to the load. A
minimum output capacitor of 10µF is required to prevent
oscillations. Larger output capacitors will be
required for applications with large transient loads to limit
peak voltage transients. See the Applications Information
section for more information on output capacitance and
reverse output characteristics.
SENSE: Sense. For fixed voltage versions of the LT1963
(LT1963-1.5/LT1963-1.8/LT1963-2.5/LT1963-3.3), the
SENSE pin is the input to the error amplifier. Optimum
regulation will be obtained at the point where the SENSE
pin is connected to the OUT pin of the regulator. In critical
applications, small voltage drops are caused by the resis-
tance (R
P
) of PC traces between the regulator and the load.
These may be eliminated by connecting the SENSE pin to
the output at the load as shown in Figure 1 (Kelvin Sense
Connection). Note that the voltage drop across the exter-
nal PC traces will add to the dropout voltage of the regu-
lator. The SENSE pin bias current is 600µA at the nominal
rated output voltage. The SENSE pin can be pulled below
ground (as in a dual supply system where the regulator
load is returned to a negative supply) and still allow the
device to start and operate.
11
LT1963 Series
1963fc
Figure 2. Adjustable Operation
IN
1963 F02
R2
OUT
V
IN
V
OUT
ADJ
GND
LT1963
R1
+
VV
R
R
IR
VV
IA
OUT ADJ
ADJ
ADJ
=+
+
()()
=
121 1
2
1
2
121
3
.
.
µ AT 25 C
OUTPUT RANGE = 1.21V TO 20V
APPLICATIO S I FOR ATIO
WUUU
The LT1963 series are 1.5A low dropout regulators opti-
mized for fast transient response. The devices are capable
of supplying 1.5A at a dropout voltage of 350mV. The low
operating quiescent current (1mA) drops to less than 1µA
in shutdown. In addition to the low quiescent current, the
LT1963 regulators incorporate several protection features
which make them ideal for use in battery-powered sys-
tems. The devices are protected against both reverse input
and reverse output voltages. In battery backup applica-
tions where the output can be held up by a backup battery
when the input is pulled to ground, the LT1963-X acts like
it has a diode in series with its output and prevents reverse
current flow. Additionally, in dual supply applications
where the regulator load is returned to a negative supply,
the output can be pulled below ground by as much as 20V
and still allow the device to start and operate.
Adjustable Operation
The adjustable version of the LT1963 has an output
voltage range of 1.21V to 20V. The output voltage is set by
the ratio of two external resistors as shown in Figure 2. The
device servos the output to maintain the voltage at the ADJ
pin at 1.21V referenced to ground. The current in R1 is
then equal to 1.21V/R1 and the current in R2 is the current
in R1 plus the ADJ pin bias current. The ADJ pin bias
current, 3µA at 25°C, flows through R2 into the ADJ pin.
The output voltage can be calculated using the formula in
Figure 2. The value of R1 should be less than 4.17k to
minimize errors in the output voltage caused by the ADJ
pin bias current. Note that in shutdown the output is turned
off and the divider current will be zero.
The adjustable device is tested and specified with the ADJ
pin tied to the OUT pin for an output voltage of 1.21V.
Specifications for output voltages greater than 1.21V will
be proportional to the ratio of the desired output voltage to
1.21V: V
OUT
/1.21V. For example, load regulation for an
output current change of 1mA to 1.5A is –3mV typical at
V
OUT
= 1.21V. At V
OUT
= 5V, load regulation is:
(5V/1.21V)(–3mV) = –12.4mV
Output Capacitance and Transient Response
The LT1963 regulators are designed to be stable with a wide
range of output capacitors. The ESR of the output capacitor
affects stability, most notably with small capacitors. A mini-
mum output capacitor of 10µF with an ESR in the range of
50m to 3 is recommended to prevent oscillations. Larger
values of output capacitance can decrease the peak devia-
tions and provide improved transient response for larger
load current changes. Bypass capacitors, used to decouple
individual components powered by the LT1963, will in-
crease the effective output capacitor value.
Extra consideration must be given to the use of ceramic
capacitors. Ceramic capacitors are manufactured with a
variety of dielectrics, each with different behavior across
temperature and applied voltage. The most common di-
electrics used are specified with EIA temperature charac-
teristic codes of Z5U, Y5V, X5R and X7R. The Z5U and Y5V
dielectrics are good for providing high capacitances in a
small package, but they tend to have strong voltage and
temperature coefficients as shown in Figures 2 and 3.
When used with a 5V regulator, a 16V 10µF Y5V capacitor
can exhibit an effective value as low as 1µF to 2µF for the
DC bias voltage applied and over the operating tempera-
ture range. The X5R and X7R dielectrics result in more
stable characteristics and are more suitable for use as the
output capacitor. The X7R type has better stability across
temperature, while the X5R is less expensive and is
available in higher values. Care still must be exercised
when using X5R and X7R capacitors; the X5R and X7R
codes only specify operating temperature range and maxi-
mum capacitance change over temperature. Capacitance
change due to DC bias with X5R and X7R capacitors is
better than Y5V and Z5U capacitors, but can still be
significant enough to drop capacitor values below appro-
priate levels. Capacitor DC bias characteristics tend to
12
LT1963 Series
1963fc
operating region for all values of input-to-output voltage.
The protection is designed to provide some output current
at all values of input-to-output voltage up to the device
breakdown.
When power is first turned on, as the input voltage rises,
the output follows the input, allowing the regulator to start
up into very heavy loads. During the start-up, as the input
voltage is rising, the input-to-output voltage differential is
small, allowing the regulator to supply large output
currents. With a high input voltage, a problem can occur
wherein removal of an output short will not allow the
output voltage to recover. Other regulators, such as the
LT1085, also exhibit this phenomenon, so it is not unique
to the LT1963-X.
The problem occurs with a heavy output load when the
input voltage is high and the output voltage is low. Com-
mon situations are immediately after the removal of a
short-circuit or when the shutdown pin is pulled high after
the input voltage has already been turned on. The load line
for such a load may intersect the output current curve at
two points. If this happens, there are two stable output
operating points for the regulator. With this double inter-
section, the input power supply may need to be cycled down
to zero and brought up again to make the output recover.
Output Voltage Noise
The LT1963 regulators have been designed to provide low
output voltage noise over the 10Hz to 100kHz bandwidth
while operating at full load. Output voltage noise is typi-
cally 40nV/Hz over this frequency bandwidth for the
LT1963 (adjustable version). For higher output voltages
(generated by using a resistor divider), the output voltage
noise will be gained up accordingly. This results in RMS
noise over the 10Hz to 100kHz bandwidth of 14µV
RMS
for
the LT1963 increasing to 38µV
RMS
for the LT1963-3.3.
Higher values of output voltage noise may be measured
when care is not exercised with regards to circuit layout
and testing. Crosstalk from nearby traces can induce
unwanted noise onto the output of the LT1963-X. Power
supply ripple rejection must also be considered; the LT1963
regulators do not have unlimited power supply rejection
and will pass a small portion of the input noise through to
the output.
Figure 4. Ceramic Capacitor Temperature Characteristics
APPLICATIO S I FOR ATIO
WUUU
TEMPERATURE (°C)
–50
40
20
0
–20
–40
–60
–80
100
25 75
1963 F04
–25 0
50 100 125
Y5V
CHANGE IN VALUE (%)
X5R
BOTH CAPACITORS ARE 16V,
1210 CASE SIZE, 10µF
improve as component case size increases, but expected
capacitance at operating voltage should be verified.
Voltage and temperature coefficients are not the only
sources of problems. Some ceramic capacitors have a
piezoelectric response. A piezoelectric device generates
voltage across its terminals due to mechanical stress,
similar to the way a piezoelectric accelerometer or micro-
phone works. For a ceramic capacitor the stress can be
induced by vibrations in the system or thermal transients.
Overload Recovery
Like many IC power regulators, the LT1963-X has safe
operating area protection. The safe area protection de-
creases the current limit as input-to-output voltage in-
creases and keeps the power transistor inside a safe
Figure 3. Ceramic Capacitor DC Bias Characteristics
DC BIAS VOLTAGE (V)
CHANGE IN VALUE (%)
1963 F03
20
0
–20
–40
–60
–80
100
0
4
8
10
26
12
14
X5R
Y5V
16
BOTH CAPACITORS ARE 16V,
1210 CASE SIZE, 10µF

LT1963EFE-1.8#TRPBF

Mfr. #:
Manufacturer:
Analog Devices / Linear Technology
Description:
LDO Voltage Regulators 1.5A, Fast Transient LDO in FE-16
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union