7
AC Electrical Specications
Unless otherwise noted, all typicals and gures are at the nominal operating conditions of V
IN+
= 0, V
IN-
= 0 V, V
DD1
=
V
DD2
= 5 V and T
A
= 25°C; all Min./Max. specications are within the Recommended Operating Conditions.
Parameter Symbol Min. Typ.* Max. Units Test Conditions Fig. Note
V
OUT
Bandwidth
(-3 dB) sine wave.
BW 50 100 kHz V
IN+
= 200mVpk-pk 12,13
V
OUT
Noise N
OUT
6mV
RMS
V
IN+
= 0.0 V 13
V
IN
to V
OUT
Signal
Delay (50 – 10%)
t
PD10
2.03 3.3
Ps
Measured at output of
MC34081on Figure 15.
4,15
V
IN
to V
OUT
Signal
Delay (50 – 50%)
t
PD50
3.47 5.6
Ps
V
IN+
= 0 mV to 150mV step.
V
IN
to V
OUT
Signal
Delay (50 – 90%)
t
PD90
4.99 9.9
Ps
V
OUT
Rise/ Fall Time
(10 – 90%)
t
R/F
2.96 6.6
Ps
Common Mode
Transient Immunity
CMTI 10.0 15.0
kV/Ps
V
CM
= 1 kV, T
A
= 25°C 16 14
Power Supply
Rejection
PSR 170 mV
RMS
With recommended
application circuit.
15
Package Characteristics
Parameter Symbol Min. Typ.* Max. Units Test Conditions Fig. Note
Input-Output
Momentary Withstand
Voltage
V
ISO
3750 V
RMS
RH < 50%,
t = 1 min. T
A
= 25°C
16,17
Resistance
(Input-Output)
R
I-O
>10
9
:
V
I-O
= 500 V
DC
18
Capacitance
(Input-Output)
C
I-O
1.2 pF ƒ = 1 MHz 18
8
Notes:
General Note: Typical values represent the mean value of all
characterization units at the nominal operating conditions. Typical drift
specications are determined by calculating the rate of change of the
specied parameter versus the drift parameter (at nominal operating
conditions) for each characterization unit, and then averaging the
individual unit rates. The corresponding drift gures are normalized to
the nominal operating conditions and show how much drift occurs as
the par-ticular drift parameter is varied from its nominal value, with all
other parameters held at their nominal operating values. Note that the
typical drift specications in the tables below may dier from the slopes
of the mean curves shown in the corresponding gures.
1. Avago Technologies recommends operation with V
IN-
= 0 V (tied to
GND1). Limiting V
IN+
to 100 mV will improve DC nonlinearity and
nonlinearity drift. If V
IN-
is brought above V
DD1
– 2 V, an internal test
mode may be activated. This test mode is for testing LED coupling
and is not intended for customer use.
2. This is the Absolute Value of Input Oset Change vs. Temperature.
3. Gain is dened as the slope of the best-t line of dierential output
voltage (V
OUT+
–V
OUT-
) vs. dierential input voltage (V
IN+
–V
IN-
) over
the specied input range.
4. This is the Absolute Value of Gain Change vs. Temperature in PPM
level.
5. Nonlinearity is dened as half of the peak-to-peak output deviation
from the best-t gain line, expressed as a percentage of the full-scale
dierential output voltage.
6. NL100 is the nonlinearity specied over an input voltage range of
±100 mV.
7. The input supply current decreases as the dierential input voltage
(V
IN+
–V
IN-
) decreases.
8. The maximum specied output supply current occurs when the
dierential input voltage (V
IN+
–V
IN-
) = -200 mV, the maximum
recommended operating input voltage. However, the output supply
current will continue to rise for dierential input voltages up to
approximately -300 mV, beyond which the output supply current
remains constant.
9. Because of the switched-capacitor nature of the input sigma-delta
converter, time-averaged values are shown.
10. When the dierential input signal exceeds approximately 308 mV,
the outputs will limit at the typical values shown.
11. Short circuit current is the amount of output current generated when
either output is shorted to V
DD2
or ground.
12. CMRR is dened as the ratio of the dierential signal gain (signal
applied dierentially between pins 2 and 3) to the common-mode
gain (input pins tied together and the signal applied to both inputs
at the same time), expressed in dB.
13. Output noise comes from two primary sources: chopper noise and
sigma-delta quantization noise. Chopper noise results from chopper
stabilization of the output op-amps. It occurs at a specic frequency
(typically 400 kHz at room temperature), and is not attenuated by
the internal output lter. A lter circuit can be easily added to the
external post-amplier to reduce the total RMS output noise. The
internal output lter does eliminate most, but not all, of the sigma-
delta quantization noise. The magnitude of the output quantization
noise is very small at lower frequencies (below 10kHz) and increases
with increasing frequency.
14. CMTI (Common Mode Transient Immunity or CMR, Common Mode
Rejection) is tested by applying an exponentially rising/falling
voltage step on pin 4 (GND1) with respect to pin 5 (GND2). The
rise time of the test waveform is set to approximately 50 ns. The
amplitude of the step is adjusted until the dierential output (V
OUT+
V
OUT-
) exhibits more than a 200 mV deviation from the average
output voltage for more than 1Ps. The ACPL-782T will continue to
function if more than 10 kV/Ps common mode slopes are applied, as
long as the breakdown voltage limitations are observed.
15. Datasheet value is the dierential amplitude of the transient at the
output of the ACPL-782T when a 1 V
pk-pk
, 1 MHz square wave with 40
ns rise and fall times is applied to both V
DD1
and V
DD2
.
16. In accordance with UL 1577, each optocoupler is proof tested by
applying an insulation test voltage ≥4500 V
RMS
for 1 second (leakage
detection current limit, II-O ≤ 5 PA). This test is performed before the
100% production test for partial discharge (method b) shown in IEC
60747-5-5/DIN EN 60747-5-2 Insulation Characteristic Table.
17. The Input-Output Momentary Withstand Voltage is a dielectric
voltage rating that should not be interpreted as an input-output
continuous voltage rating. For the continuous voltage rating refers to
the IEC 60747-5-5/DIN EN 60747-5-2 insulation characteristics table
and your equipment level safety specication.
18. This is a two-terminal measurement: pins 1–4 are shorted together
and pins 5–8 are shorted together.
9
T
A
- TEMPERATURE - °C
0.6
0.5
0.3
-25
0.8
35 95
0.2
0.7
-55 125
0.4
565
V
OS
- INPUT OFFSET VOLTAGE - mV
V
DD
- SUPPLY VOLTAGE - V
0.37
0.36
0.39
4.75 5.0
0.33
vs. V
DD1
4.55.55.25
vs. V
DD2
0.34
0.38
0.35
V
OS
- INPUT OFFSET VOLTAGE - mV
G - GAIN - V/V
T
A
- TEMPERATURE - °C
8.025
8.02
8.015
-35
8.035
25 85
8.01
8.03
-55 125545 105
-15 65
Figure 3. Input Oset Voltage vs. Supply.
Figure 4. Gain vs. Temperature.
Figure 1. Input Oset Voltage Test Circuit.
Figure 2. Input Oset Voltage vs. Temperature.
0.1 PF
V
DD2
V
OUT
8
7
6
1
3
ACPL-782T
5
2
4
0.1 PF
10 K
10 K
V
DD1
+15 V
0.1 PF
0.1 PF
-15 V
+
-
AD624CD
GAIN = 100
0.47
PF
0.47
PF

ACPL-782T-300E

Mfr. #:
Manufacturer:
Broadcom / Avago
Description:
Optically Isolated Amplifiers 100kHz, 3750vrms 30ppm/C Gain Drift
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet