Page 7Page 6
POWER SUPPLY REQUIREMENTS
The module does not have an internal voltage
regulator; therefore it requires a clean, well-regulated
power source. While it is preferable to power the unit
from a battery, it can also be operated from a power
supply as long as noise is less than 20mV. Power
supply noise can affect the transmitter modulation;
therefore, providing a clean power supply for the
module should be a high priority during design.
A 10Ω resistor in series with the supply followed by a
10µF tantalum capacitor from V
CC
to ground will help in cases where the quality
of supply power is poor. These values may need to be adjusted depending on
the noise present on the supply line.
DATA INPUTS
When the Transmit Enable (TE) line goes high, the states of the eight data input
lines are recorded and encoded for transmission. The data lines are tri-state,
which means that they can be high, low, or floating, though the decoder will
interpret the floating state as a low. This feature means that the data lines do not
require pull-up or pull-down resistors. The states of the data lines can be set by
switches, jumpers, microcontrollers, or hardwired on the PCB.
The encoder will send the states of the address and data lines three times. If the
TE line is still high, it will begin the cycle again. This means that the states of the
data lines are refreshed with each cycle, so the data lines can be changed
without having to pull TE low. There can be up to a 150mS lag in response as
the transmitter finishes one cycle then refreshes and starts over.
ENABLING TRANSMISSION
The module’s Transmit Enable (TE) line controls transmission status. When
taken high, the module initiates transmission, which continues until the line is
pulled low or power to the module is removed. In some cases this line will be
wired permanently to V
CC
and transmission controlled by switching V
CC
to the
module. This is particularly useful in applications where the module powers up
and sends a transmission only when a button is pressed on the remote.
USING LADJ
The LADJ line allows the transmitter’s output power to be easily adjusted for
range control, lower power consumption, or to meet legal requirements. This is
done by placing a resistor between GND and LADJ. When LADJ is connected
directly to GND, the output power will be at its maximum. Placing a resistor will
lower the output power by up to 7dB, as shown on Page 3 of this data guide.
This is very useful during FCC testing to compensate for antenna gain or other
product-specific issues that may cause the output power to exceed legal limits.
A variable resistor can be used so that the test lab can precicely adjust the output
power to the maximun level allowed by law. The resistor’s value can be noted
and a fixed resistor substituted for final testing. Even in designs where
attenuation is not anticipated, it is a good idea to place a resistor pad connected
to LADJ and GND so that it can be used if needed.
+
10Ω
10μF
Vcc IN
Vcc TO
MODULE
Figure 10: Supply Filter
ENCODER OPERATION
The KH Series transmitter internally utilizes
the HT640 encoder from Holtek. The
encoder begins a three-word transmission
cycle when the Transmission Enable line
(TE) is pulled high. This cycle will repeat
itself for as long as the TE line is held high.
Once TE falls low, the encoder output
completes its final cycle and then stops as
shown in the Encoder / Decoder Timing
diagram. When a transmission enable signal
is applied, the encoder scans and transmits
the status of the 10 bits of the address code
and the 8 bits of the data serially in the order
A0 to A9, D0 to D7.
The status of each address / data pin can be
individually preset to logic high, low, or
floating. The floating state on the data input
is interpreted as logic low by the decoders
since the decoder output only has two
states. The address pins are usually set to
transmit particular security codes by DIP
switches or PCB wiring, while the data is
selected using push buttons or electronic
switches. The floating state allows the KH transmitter to be used without pull-up
or pull-down resistors on the data and address input lines.
SETTING THE TRANSMITTER ADDRESS
The module provides ten tri-state address lines. This allows for the formation of
up to 59,049 (3
10
) unique transmitter-receiver relationships. Tri-state means that
the address lines have three distinct states: high, low, or floating. These pins
may be hardwired or configured via a microprocessor, DIP switch, or jumpers.
The receiver’s address line states must match the transmitter’s exactly for a
transmission to be recognized. If the transmitted address does not match the
receiver’s local address, then the receiver will take no action.
Power On
Standby Mode
Transmission
Enabled?
Yes
No
3 Data Words
Transmitted
Transmission
Still Enabled?
3 Data Words
Transmitted
Continuously
No
Yes
Figure 8: Encoder Flowchart
Check
Check
< 1 Word
3 Words
Transmitted Continuously
3 Words
1/2 Clock Time
Decoder
Data Out
Decoder VT
Encoder
Data Out
Encoder
Transmit
Enable
1/2 Clock Time
2 Words
2
14
Clocks
2
14
Clocks
Figure 9: Encoder / Decoder Timing Diagram
Page 9Page 8
TYPICAL APPLICATIONS
Below is an example of a basic remote control transmitter utilizing the KH Series
transmitter. When a key is pressed on the transmitter, a corresponding line on
the receiver goes high. A schematic for the receiver / decoder circuit may be
found in the KH Series Receiver Data Guide. These circuits are implemented in
the KH Series Basic Evaluation kit. They can be easily modified for custom
applications and clearly demonstrate the ease of using the KH Series modules
for remote control applications.
The ten-position DIP switch is used to set the address to either ground or
floating. Since the floating state is a valid state, no pull-up resistors are needed.
The data lines are pulled high by momentary pushbuttons. Since the floating
state is interpreted as a low by the decoder, no pull-down resistors are needed.
Diodes are used to pull the TE line high when any data line goes high, while
isolating the data lines from each other. This will make the transmitter send data
when any button is pressed without affecting any of the other data lines.
The KH Series transmitter / encoder module is also suitable for use with the Linx
OEM function receivers. These receivers are FCC certified, making product
introduction extremely quick. Information on these products can be found on the
Linx website at www.linxtechnologies.com.
C
R2
03
2
3
V LITHI
UM
V
1
2
3
2
0
1
9
4
5
6
17
1
6
7
8
9
14
12
1
0
11
S
W-DIP-1
0
G
N
D
G
N
D
G
N
D
V
CC
G
N
D
G
ND
/
LAD
J
1
D
0
2
D
1
3
G
N
D
4
V
CC
5
TE
6
D2
7
D
3
8
D4
9
D
5
1
0
D
6
11
D7
12
A
0
1
3
A1
14
A2
1
5
A
3
16
A4
1
7
A
5
1
8
A
6
1
9
A7
2
0
A
8
21
A
9
22
G
N
D
2
3
ANT
24
TXE
-
xxx
-
KH
V
CC
G
N
D
R2
1
00K
1
2
3
4
DPAK
-
X2
3
4
DPAK
-
X2
1
2
3
4
DPAK-X
2
1
2
3
4
DPAK
-
X2
G
ND
1
2
Figure 11: Basic Remote Control Transmitter
PROTOCOL GUIDELINES
While many RF solutions impose data formatting and balancing requirements,
Linx RF modules do not encode or packetize the signal content in any manner.
The received signal will be affected by such factors as noise, edge jitter, and
interference, but it is not purposefully manipulated or altered by the modules.
This gives the designer tremendous flexibility for protocol design and interface.
Despite this transparency and ease of use, it must be recognized that there are
distinct differences between a wired and a wireless environment. Issues such as
interference and contention must be understood and allowed for in the design
process. To learn more about protocol considerations, we suggest you read Linx
Application Note AN-00160.
Errors from interference or changing signal conditions can cause corruption of
the data packet, so it is generally wise to structure the data being sent into small
packets. This allows errors to be managed without affecting large amounts of
data. A simple checksum or CRC could be used for basic error detection. Once
an error is detected, the protocol designer may wish to simply discard the corrupt
data or implement a more sophisticated scheme to correct it.
INTERFERENCE CONSIDERATIONS
The RF spectrum is crowded and the potential for conflict with other unwanted
sources of RF is very real. While all RF products are at risk from interference, its
effects can be minimized by better understanding its characteristics.
Interference may come from internal or external sources. The first step is to
eliminate interference from noise sources on the board. This means paying
careful attention to layout, grounding, filtering, and bypassing in order to
eliminate all radiated and conducted interference paths. For many products, this
is straightforward; however, products containing components such as switching
power supplies, motors, crystals, and other potential sources of noise must be
approached with care. Comparing your own design with a Linx evaluation board
can help to determine if and at what level design-specific interference is present.
External interference can manifest itself in a variety of ways. Low-level
interference will produce noise and hashing on the output and reduce the link’s
overall range.
High-level interference is caused by nearby products sharing the same
frequency or from near-band high-power devices. It can even come from your
own products if more than one transmitter is active in the same area. It is
important to remember that only one transmitter at a time can occupy a
frequency, regardless of the coding of the transmitted signal. This type of
interference is less common than those mentioned previously, but in severe
cases it can prevent all useful function of the affected device.
Although technically it is not interference, multipath is also a factor to be
understood. Multipath is a term used to refer to the signal cancellation effects
that occur when RF waves arrive at the receiver in different phase relationships.
This effect is a particularly significant factor in interior environments where
objects provide many different signal reflection paths. Multipath cancellation
results in lowered signal levels at the receiver and, thus, shorter useful distances
for the link.
BOARD LAYOUT GUIDELINES
If you are at all familiar with RF devices, you may be concerned about
specialized board layout requirements. Fortunately, because of the care taken by
Linx in designing the modules, integrating them is very straightforward. Despite
this ease of application, it is still necessary to maintain respect for the RF stage
and exercise appropriate care in layout and application in order to maximize
performance and ensure reliable operation. The antenna can also be influenced
by layout choices. Please review this data guide in its entirety prior to beginning
your design. By adhering to good layout principles and observing some basic
design rules, you will be on the path to RF success.
The adjacent figure shows the suggested
PCB footprint for the module. The actual pad
dimensions are shown in the Pad Layout
section of this manual. A ground plane (as
large as possible) should be placed on a
lower layer of your PC board opposite the
module. This ground plane can also be critical
to the performance of your antenna, which will
be discussed later. There should not be any
ground or traces under the module on the
same layer as the module, just bare PCB.
During prototyping, the module should be soldered to a properly laid-out circuit
board. The use of prototyping or “perf” boards will result in horrible performance
and is strongly discouraged.
No conductive items should be placed within 0.15in of the module’s top or sides.
Do not route PCB traces directly under the module. The underside of the module
has numerous signal-bearing traces and vias that could short or couple to traces
on the product’s circuit board.
The module’s ground lines should each have their own via to the ground plane
and be as short as possible.
AM / OOK receivers are particularly subject to noise. The module should, as
much as reasonably possible, be isolated from other components on your PCB,
especially high-frequency circuitry such as crystal oscillators, switching power
supplies, and high-speed bus lines. Make sure internal wiring is routed away
from the module and antenna, and is secured to prevent displacement.
The power supply filter should be placed close to the module’s V
CC
line.
In some instances, a designer may wish to encapsulate or “pot” the product.
Many Linx customers have done this successfully; however, there are a wide
variety of potting compounds with varying dielectric properties. Since such
compounds can considerably impact RF performance, it is the responsibility of
the designer to carefully evaluate and qualify the impact and suitability of such
materials.
The trace from the module to the antenna should be kept as short as possible.
A simple trace is suitable for runs up to 1/8-inch for antennas with wide
bandwidth characteristics. For longer runs or to avoid detuning narrow bandwidth
antennas, such as a helical, use a 50-ohm coax or 50-ohm microstrip
transmission line as described in the following section.
Page 11Page 10
GROUND PLANE
GROUND PLANE
ON LOWER LAYER
ON LOWER LAYER
GROUND PLANE
ON LOWER LAYER
Figure 12: Suggested PCB Layout
Dielectric Constant Width/Height (W/d)
Effective Dielectric
Constant
Characteristic
Impedance
4.80 1.8 3.59 50.0
4.00 2.0 3.07 51.0
2.55 3.0 2.12 48.0
Trace
Board
Ground plane
Figure 13: Microstrip Formulas
MICROSTRIP DETAILS
A transmission line is a medium whereby RF energy is transferred from one
place to another with minimal loss. This is a critical factor, especially in high-
frequency products like Linx RF modules, because the trace leading to the
module’s antenna can effectively contribute to the length of the antenna,
changing its resonant bandwidth. In order to minimize loss and detuning, some
form of transmission line between the antenna and the module should be used,
unless the antenna can be placed very close (<1/8in.) to the module. One
common form of transmission line is a coax cable, another is the microstrip. This
term refers to a PCB trace running over a ground plane that is designed to serve
as a transmission line between the module and the antenna. The width is based
on the desired characteristic impedance of the line, the thickness of the PCB,
and the dielectric constant of the board material. For standard 0.062in thick FR-
4 board material, the trace width would be 111 mils. The correct trace width can
be calculated for other widths and materials using the information below. Handy
software for calculating microstrip lines is also available on the Linx website,
www.linxtechnologies.com.

TXE-315-KH

Mfr. #:
Manufacturer:
Description:
RF TX IC ASK 315MHZ 24SMD MOD
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet