PF0601.333NL

USA 858 674 8100
Germany 49 7032 7806 0
Singapore 65 6287 8998
Shanghai
86 21 54643211 / 2
China 86 755 33966678
Taiwan 886 3 4641811
www.pulseeng.com
32 SPM2007 (11/07)
.005/0,13
.118
3,00
MAX
XXXNL
.060
TYP
1,50
.256
MAX
6,50
.244
6,20
MAX
.181
4,60
MAX
.272
6,90
MAX
SUGGESTED PAD LAYOUT
.161
REF
4,10
.059
REF
1,50
.079
2,00
REF
Height: 3mm Max
Footprint: 6.9mm x 6.5mm Max
Current Rating: up to 2A
Inductance Range: 2.9µH to 330µH
260°C reflow peak temperature qualified
SMT POWER INDUCTORS
Shielded Drum Core - PF0601NL Series
Mechanical
Schematic
1
2
Weight . . . . . . . . . .0.35 grams
Tape & Reel . . . . . . .1200/reel
Dimensions: Inches
mm
Unless otherwise specified,
all tolerances are ± .004
0,10
USER DIRECTION
OF FEED
.630
± .012
16,00
± 0,30
.270
6,86
.472
12,00
TAPE & REEL
LAYOUT
.130
3,30
.285
7,24
Part
2,3
Inductance Inductance
Irated
5
DCR (mΩ)
Saturation
6
Heating
7
Core Loss
8
SRF
Number
@0A
DC @Irated
(A) MAX
Current Isat Current IDC Factor
(MHz)
(μH ±20%) (μH TYP) -20% (A) +45°C(A) (K2)
PF0601.292NL 2.9 2.6 2.0 55 2.0 3.3 1500 >40
PF0601.402NL 4.0 3.5 1.63 69 1.63 3.0 1700 >40
PF0601.552NL 5.5 4.8 1.5 75 1.5 2.6 2000 >40
PF0601.103NL 10 8.8 1.1 135 1.1 2.1 2700 31
PF0601.123NL 12 11 1.0 140 1.0 2.0 3100 30
PF0601.153NL 15 13 0.9 155 0.9 1.7 3300 26
PF0601.183NL 18 16 0.8 210 0.8 1.6 3700 23
PF0601.223NL 22 19 0.74 230 0.74 1.5 4000 20
PF0601.273NL 27 24 0.66 305 0.66 1.4 4600 19
PF0601.333NL 33 29 0.59 345 0.59 1.3 4900 17
PF0601.393NL 39 34 0.54 445 0.54 1.2 5500 16
PF0601.473NL 47 41 0.5 515 0.5 1.0 5900 14
PF0601.563NL 56 49 0.46 575 0.46 0.9 6400 13
PF0601.683NL 68 60 0.42 765 0.42 0.85 7200 12
PF0601.823NL 82 72 0.38 840 0.38 0.80 7800 11
PF0601.104NL 100 88 0.34 1120 0.34 0.67 8700 9.0
PF0601.124NL 120 106 0.31 1250 0.31 0.62 9400 8.0
PF0601.154NL 150 132 0.28 1440 0.28 0.60 11000 7.0
PF0601.184NL 180 158 0.26 1920 0.26 0.52 12000 6.5
PF0601.224NL 220 194 0.23 2200 0.23 0.45 13000 6.1
PF0601.274NL 270 238 0.22 3000 0.22 0.40 14000 5.8
PF0601.334NL 330 290 0.19 3300 0.19 0.30 16000 5.1
NOTES FROM TABLE: (See page 43)
Electrical Specifications @ 25°C — Operating Temperature -40°C to +130°C
0
20
40
60
80
100
120
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Normalized Isat
Percentage of the initial inductance
Inductance vs Current Characteristics
USA 858 674 8100
Germany 49 7032 7806 0
Singapore 65 6287 8998
Shanghai
86 21 54643211 / 2
China 86 755 33966678
Taiwan 886 3 4641811
www.pulseeng.com
43
SPM2007 (11/07)
SMT POWER INDUCTORS
Shielded Drum Core Series
Notes from Tables (pages 27 - 42)
1. Unless otherwise specified, all testing is made at
100kHz, 0.1VAC.
2.
Optional Tape & Reel packaging can be ordered by
adding a "T" suffix to the part number (i.e. P1166.102NL
becomes P1166.102NLT). Pulse complies with industry
standard Tape and Tape & Reel specification EIA481.
3. The "NL" suffix indicates an RoHS-compliant part
number. Non-NL suffixed parts are not necessarily
RoHS compliant, but are electrically and mechanically
equivalent to NL versions. If a part number does not
have the "NL" suffix, but an RoHS compliant version is
required, please contact Pulse for availability.
4. Temperature of the component (ambient plus
temperature rise) must be within specified operating
temperature range.
5. The rated current (Irated) as listed is either the satura-
tion current or the heating current depending on which
value is lower.
6. The saturation current, Isat, is the current at which
the component inductance drops by the indicated
percentage (typical) at an ambient temperature of
25°C. This current is determined by placing the
component in the specified ambient environment and
applying a short duration pulse current (to eliminate
self-heating effects) to the component.
7. The heating current, Idc, is the DC current required
to raise the component temperature by the indicated
delta (approximately). The heating current is
determined by mounting the component on a
typical PCB and applying current for 30 minutes. The
temperature is measured by placing the thermocouple
on top of the unit under test.
8. In high volt*time (Et) or ripple current applications, addi-
tional heating in the component can occur due to core
losses in the inductor which may necessitate derating
the current in order to limit the temperature rise of the
component. In order to determine the approximate total
loss (or temperature rise) for a given application, both
copper losses and core losses should be taken into
account.
Estimated Temperature Rise:
Trise = [Total loss (mW) / K0]
.833
(
o
C )
Total loss = Copper loss + Core loss (mW)
Copper loss = I
RMS
2
x DCR (Typical) (mW)
Irms = [I
DC
2
+ ΔI
2
/12]
1/2
(A)
Core loss = K1 x f (kHz)
1.23
x Bac(Ga)
2.38
(mW)
Bac (peak to peak flux density) = K2 x ΔI (Ga)
[= K2/L(µH) x Et(V-µSec) (Ga)]
where f varies between 25kHz and 1MHz, and Bac is
less than 2500 Gauss.
K2 is a core size and winding dependant value and
is given for each p/n in the proceeding datasheets.
K0 & K1 are platform and material dependant constants
and are given in the table below for each platform.
PG0085/86 2.3 5.29E-10
PG0087 5.8 15.2E-10
PG0040/41 0.8 2.80E-10
P1174 0.8 6.47E-10
PF0601 4.6 14.0E-10
PF0464 3.6 24.7E-10
PF0465 3.6 33.4E-10
P1166 1.9 29.6E-10
P1167 2.1 42.2E-10
PF0560NL 5.5 136E-10
P1168/69 4.8 184E-10
P1170/71 4.3 201E-10
P1172/73 5.6 411E-10
PF0552NL 8.3 201E-10
PF0553NL 7.1 411E-10
Part No.
Trise Factor Core Loss Factor
(K0 ) (K1)
Take note that the component's temperature rise varies depending on the system condition. It is suggested that the
component be tested at the system level, to verify the temperature rise of the component during system operation.
CoreLoss/K1 Vs Flux Density
0
0.50E+10
1.00E+10
1.50E+10
2.00E+10
2.50E+10
3.00E+10
0 500 1000 1500 2000 2500
DB (Gauss)
where DB = K2 x DI [= K2/L(µH) x Et(V-µSec)]
Core Loss / K1 (mW)
100KHz
200KHz
300KHz
400KHz
500KHz
700KHz
1.0MHz

PF0601.333NL

Mfr. #:
Manufacturer:
Pulse Electronics
Description:
FIXED IND 33UH 0.59A SMD
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union