www.murata-ps.com/support
UEI Series
50-60W Isolated Wide-Range DC/DC Converters
MDC_UEI Series 50-60W.C10 Page 10 of 14
SHIPPING TRAYS: LOW DENSITY CLOSED CELL POLYETHYLENE STATIC DISSIPATIVE FOAM
SHIPPING BOXES
Third Angle Projection
Dimensions are in inches (mm shown for ref. only).
Components are shown for reference only.
Tolerances (unless otherwise specified):
.XX ± 0.02 (0.5)
.XXX ± 0.010 (0.25)
Angles ± 2˚
L
1.450
TYP
TYP
0.735
2.400
TYP
9.920
0.625
+.000
-.062
0.725 TYP
C
.25 CHAMFER TYP (4-PL)
.25 R TYP
-.062
+.000
9.920
1.825
TYP
'T'
DASH NUMBER 'T' DIMENSION
-1 0.50"
-2 1.00"
Anti-static foam
4 trays of 15
Box accommodates 4 trays,
yielding 60 converters per box.
Label top side
10
(254)
10
(254)
4.25
(107.95)
www.murata-ps.com/support
UEI Series
50-60W Isolated Wide-Range DC/DC Converters
MDC_UEI Series 50-60W.C10 Page 11 of 14
Input Fusing
Certain applications and/or safety agencies may require fuses at the inputs of
power conversion components. Fuses should also be used when there is the
possibility of sustained input voltage reversal which is not current-limited. We
recommend a time delay fuse installed in the ungrounded input supply line
with a value which is approximately twice the maximum line current, calcu-
lated at the lowest input voltage.
The installer must observe all relevant safety standards and regulations. For
safety agency approvals, install the converter in compliance with the end-user
safety standard.
Input Reverse-Polarity Protection
If the input voltage polarity is reversed, an internal diode will become forward
biased and likely draw excessive current from the power source. If this source
is not current-limited or the circuit appropriately fused, it could cause perma-
nent damage to the converter.
Input Under-Voltage Shutdown and Start-Up Threshold
Under normal start-up conditions, converters will not begin to regulate properly
until the ramping-up input voltage exceeds and remains at the Start-Up
Threshold Voltage (see Specifi cations). Once operating, converters will not
turn off until the input voltage drops below the Under-Voltage Shutdown Limit.
Subsequent restart will not occur until the input voltage rises again above the
Start-Up Threshold. This built-in hysteresis prevents any unstable on/off opera-
tion at a single input voltage.
Users should be aware however of input sources near the Under-Voltage
Shutdown whose voltage decays as input current is consumed (such as capaci-
tor inputs), the converter shuts off and then restarts as the external capacitor
recharges. Such situations could oscillate. To prevent this, make sure the operat-
ing input voltage is well above the UV Shutdown voltage AT ALL TIMES.
Start-Up Time
Assuming that the output current is set at the rated maximum, the Vin to Vout Start-
Up Time (see Specifi cations) is the time interval between the point when the ramping
input voltage crosses the Start-Up Threshold and the fully loaded regulated output
voltage enters and remains within its specifi ed accuracy band. Actual measured
times will vary with input source impedance, external input capacitance, input volt-
age slew rate and fi nal value of the input voltage as it appears at the converter.
These converters include a soft start circuit to moderate the duty cycle of its
PWM controller at power up, thereby limiting the input inrush current.
The On/Off Remote Control interval from On command to V
OUT regulated
assumes that the converter already has its input voltage stabilized above the
Start-Up Threshold before the On command. The interval is measured from the
On command until the output enters and remains within its specifi ed accuracy
band. The specifi cation assumes that the output is fully loaded at maximum
rated current. Similar conditions apply to the On to V
OUT regulated specifi cation
such as external load capacitance and soft start circuitry.
Input Source Impedance
These converters will operate to specifi cations without external components,
assuming that the source voltage has very low impedance and reason-
able input voltage regulation. Since real-world voltage sources have fi nite
TECHNICAL NOTES
impedance, performance is improved by adding external fi lter components.
Sometimes only a small ceramic capacitor is suffi cient. Since it is diffi cult to
totally characterize all applications, some experimentation may be needed.
Note that external input capacitors must accept high speed switching currents.
Because of the switching nature of DC/DC converters, the input of these
converters must be driven from a source with both low AC impedance and
adequate DC input regulation. Performance will degrade with increasing input
inductance. Excessive input inductance may inhibit operation. The DC input
regulation specifi es that the input voltage, once operating, must never degrade
below the Shut-Down Threshold under all load conditions. Be sure to use
adequate trace sizes and mount components close to the converter.
I/O Filtering, Input Ripple Current and Output Noise
All models in this converter series are tested and specifi ed for input refl ected
ripple current and output noise using designated external input/output compo-
nents, circuits and layout as shown in the fi gures below. External input capaci-
tors (C
IN in fi gure 2) serve primarily as energy storage elements, minimizing
line voltage variations caused by transient IR drops in the input conductors.
Users should select input capacitors for bulk capacitance (at appropriate
frequencies), low ESR and high RMS ripple current ratings. In the fi gure below,
the C
BUS and LBUS components simulate a typical DC voltage bus. Your specifi c
system confi guration may require additional considerations. Please note that the
values of C
IN, LBUS and CBUS will vary according to the specifi c converter model.
C
IN
V
IN
C
BUS
L
BUS
C
IN
= 33μF, ESR < 700mΩ @ 100kHz
C
BUS
= 220μF, ESR < 100mΩ @ 100kHz
L
BUS
= 12μH
+VIN
−VIN
CURRENT
PROBE
TO
OSCILLOSCOPE
+
+
Figure 2. Measuring Input Ripple Current
Figure 3. Measuring Output Ripple and Noise (PARD)
C1
C1 = 1μF CERAMIC
C2 = 10μF LOW ES
LOAD 2-3 INCHES (51-76mm) FROM MODULE
C2
R
LOAD
SCOPE
+VOUT
+SENSE
−SENSE
−VOUT
www.murata-ps.com/support
UEI Series
50-60W Isolated Wide-Range DC/DC Converters
MDC_UEI Series 50-60W.C10 Page 12 of 14
applications. Sometimes it is possible to estimate the effective airfl ow if you
thoroughly understand the enclosure geometry, entry/exit orifi ce areas and the
fan fl owrate specifi cations. If in doubt, contact MPS to discuss placement and
measurement techniques of suggested temperature sensors.
CAUTION: If you routinely or accidentally exceed these Derating guidelines,
the converter may have an unplanned Over Temperature shut down. Also, these
graphs are all collected at slightly above Sea Level altitude. Be sure to reduce
the derating for higher density altitude.
Output Overvoltage Protection
This converter monitors its output voltage for an over-voltage condition using
an on-board electronic comparator. The signal is optically coupled to the pri-
mary side PWM controller. If the output exceeds OVP limits, the sensing circuit
will power down the unit, and the output voltage will decrease. After a time-out
period, the PWM will automatically attempt to restart, causing the output volt-
age to ramp up to its rated value. It is not necessary to power down and reset
the converter for the this automatic OVP-recovery restart.
If the fault condition persists and the output voltage climbs to excessive
levels, the OVP circuitry will initiate another shutdown cycle. This on/off cycling
is referred to as “hiccup” mode. It safely tests full current rated output voltage
without damaging the converter.
Output Fusing
The converter is extensively protected against current, voltage and temperature
extremes. However your output application circuit may need additional protection.
In the extremely unlikely event of output circuit failure, excessive voltage could be
applied to your circuit. Consider using an appropriate fuse in series with the output.
Output Current Limiting
As soon as the output current increases to approximately 125% to 150% of
its maximum rated value, the DC/DC converter will enter a current-limiting
mode. The output voltage will decrease proportionally with increases in output
current, thereby maintaining a somewhat constant power output. This is com-
monly referred to as power limiting.
Current limiting inception is defi ned as the point at which full power falls
below the rated tolerance. See the Performance/Functional Specifi cations. Note
particularly that the output current may briefl y rise above its rated value. This
enhances reliability and continued operation of your application. If the output
current is too high, the converter will enter the short circuit condition.
Output Short Circuit Condition
When a converter is in current-limit mode, the output voltage will drop as the
output current demand increases. If the output voltage drops too low, the mag-
netically coupled voltage used to develop primary side voltages will also drop,
thereby shutting down the PWM controller. Following a time-out period, the
PWM will restart, causing the output voltage to begin ramping up to its appro-
priate value. If the short-circuit condition persists, another shutdown cycle will
initiate. This on/off cycling is called “hiccup mode”. The hiccup cycling reduces
the average output current, thereby preventing excessive internal tempera-
tures. A short circuit can be tolerated indefi nitely.
In critical applications, output ripple and noise (also referred to as periodic
and random deviations or PARD) may be reduced by adding fi lter elements
such as multiple external capacitors. Be sure to calculate component tem-
perature rise from refl ected AC current dissipated inside capacitor ESR. Our
Application Engineers can recommend potential solutions.
Floating Outputs
Since these are isolated DC/DC converters, their outputs are “fl oating” with
respect to their input. The essential feature of such isolation is ideal ZERO
CURRENT FLOW between input and output. Real-world converters however do
exhibit tiny leakage currents between input and output (see Specifi cations).
These leakages consist of both an AC stray capacitance coupling component
and a DC leakage resistance. When using the isolation feature, do not allow
the isolation voltage to exceed specifi cations. Otherwise the converter may
be damaged. Designers will normally use the negative output (-Output) as
the ground return of the load circuit. You can however use the positive output
(+Output) as the ground return to effectively reverse the output polarity.
Minimum Output Loading Requirements
These converters employ a synchronous rectifi er design topology. All models
regulate within specifi cation and are stable under no load to full load conditions.
Operation under no load might however slightly increase output ripple and noise.
Thermal Shutdown
To prevent many over temperature problems and damage, these converters
include thermal shutdown circuitry. If environmental conditions cause the
temperature of the DC/DC’s to rise above the Operating Temperature Range
up to the shutdown temperature, an on-board electronic temperature sensor
will power down the unit. When the temperature decreases below the turn-on
threshold, the converter will automatically restart. There is a small amount of
hysteresis to prevent rapid on/off cycling.
CAUTION: If you operate too close to the thermal limits, the converter may shut
down suddenly without warning. Be sure to thoroughly test your application to
avoid unplanned thermal shutdown.
Temperature Derating Curves
The graphs in this data sheet illustrate typical operation under a variety of condi-
tions. The Derating curves show the maximum continuous ambient air temperature
and decreasing maximum output current which is acceptable under increasing
forced airfl ow measured in Linear Feet per Minute (“LFM”). Note that these are
AVERAGE measurements. The converter will accept brief increases in temperature
and/or current or reduced airfl ow as long as the average is not exceeded.
Note that the temperatures are of the ambient airfl ow, not the converter
itself which is obviously running at higher temperature than the outside air.
Also note that “natural convection” is defi ned as very fl ow rates which are not
using fan-forced airfl ow. Depending on the application, “natural convection” is
usually about 30-65 LFM but is not equal to still air (0 LFM).
MPS makes Characterization measurements in a closed cycle wind
tunnel with calibrated airfl ow. We use both thermocouples and an infrared
camera system to observe thermal performance. As a practical matter, it is
quite diffi cult to insert an anemometer to precisely measure airfl ow in most

UEI-5/12-Q48NR-C

Mfr. #:
Manufacturer:
Description:
Isolated DC/DC Converters 48Vin 5Vout 12A 60W Neg polarity
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union