NCP1034
www.onsemi.com
19
Equations 32 to 34. The transistor reverse breakdown
voltage must be selected to be able to withstand the voltage
difference between maximum input voltage and VCC.
R t
V
INmin
* V
ZT
I
CS
)I
CD
) I
ZT
(eq. 31)
P
R
+
ǒ
V
INmax
* V
CC
Ǔ
@
ǒ
I
CS
) I
CD
) I
ZT
Ǔ
(eq. 32)
P
D
+
ǒ
V
INmax
* V
ZT
R
*
I
CS
Ǔ
@ V
ZT
(eq. 33)
P
D
+
ǒ
V
INmax
* V
ZT
R
*
I
CS
Ǔ
@ V
ZT
(eq. 34)
P
T
+
ǒ
V
INmax
* V
CC
Ǔ
@
ǒ
I
CS
) I
CD
Ǔ
(eq. 35)
Table 2. POWER SUPPLY REGULTOR EXAMPLES
Components MOSFETs
Q
G(TOT)
(nC)
f
(kHz)
V
INmax
(V)
V
INmin
(V)
I
SUPPLYmax
(mA)
R
BIAS
(kW)
ZD Transistor
LS−FET NTD24N06 24
200 60 36 8.7 2.6 MMSZ4699
HS−FET NTD3055 7.1
LS−FET NTD24N06 24
300 60 20 16.9 10 MMSZ4699 MJD31
HS−FET NTD24N06 24
PCB Layout
The layout of high−frequency and high−current switching
converters has a large impact on the circuit parameters. It is
important, therefore, to pay close attention to the PCB
layout.
The input capacitor, MOSFETs, inductor and output
capacitor should be placed as close as possible to one
another. This is suitable to reduce EMI and to minimize VS
overshoots. Connecting the signal and power ground at one
point near the output connector improves load regulation.
Connection between the source pin of the low side MOSFET
and the IC should be very short with wide traces and
optimally using two layers to achieve minimum inductance
between them.
The blocking and bootstrap capacitors should be placed as
close as possible to the IC. The feedback and compensation
network should be close to the IC to minimize noise.
TYPICAL APPLICATION
Figure 33. Single Output Buck Converter from 38 V − 58 V to 5 V/5 A @ 200 kHz
12
5
15
4
16
1
14
10
11
13
7
6
2
3
R7
10k
R6
20k
C5
220n
R5
3k9
VCC
SYNC
RT
UVLO
OCSET
GND
HDRV
VS
OCIN
LDRV
PGND
FB
COMP
SS/SD
C10
100n
D1
1N4148
C4
100n
R4
110k
IC1
NCP1034SMD
89
DRVVCC VB
R3
4k7
C7
330p
C6
12n
R8
10k
48 V $20%
C1A
2u2
C9
47
C9B
47
Q2
NTD3055
Q3
NTD24N06
L1
13
R2
5k6
R1
16k9
R9
1k2
C8
1n8
GND GND GND GND GND
GND
GND
GND
GND
C1B
2u2
C9C
47
GND
GND
R10
10k
GND
D2
C2
100n
C3 100n
X1−1
X1−2
X2−2
X2−1
R15
0R
R11A 10k
R11B 10k
R11C 10k
R11D 10k
R11E 10k
MMSZ4699
5V@5A, 200kHz
NCP1034
www.onsemi.com
20
50
55
60
65
70
75
80
85
90
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
V
IN
= 58 V
48 V
38 V
Figure 34. Efficiency and Power Loss of Circuit at Figure 33
I
OUT
(A)
EFFICIENCY (%)
NCP1034
www.onsemi.com
21
Bill of Materials
Designator Qty Description Value Tolerance Footprint Manufacturer
Manufacturer
Part Number
R9 1 Resistor 1k2 1% 1206 Vishay CRCW10261K20FKEA
R5 1 Resistor 3k9 1% 1206 Vishay CRCW10263K90FKEA
R3 1 Resistor 4k7 1% 1206 Vishay CRCW10264K60FKEA
R2 1 Resistor 5k6 1% 1206 Vishay CRCW10265K60FKEA
R1 1 Resistor 16k9 1% 1206 Vishay CRCW102616K9FKEA
R6 1 Resistor 20k 1% 1206 Vishay CRCW102620K0FKEA
R11A, R11B,
R11C, R11D,
R11E
5 Resistor 12k 1% 1206 Vishay CRCW102612K0FKEA
R4 1 Resistor 110k 1% 1206 Vishay CRCW1206110KFKEA
R7, R8, R10 3 Resistor 10k 1% 1206 Vishay CRCW120610K0FKEA
C8 1 Ceramic Capacitor 1n8 10% 1206 Kemet C1206C182K5FA−TU
C6 1 Ceramic Capacitor 12n 10% 1206 Kemet C1206C123K5FACTU
C5 1 Ceramic Capacitor 220n 10% 1206 Kemet C1206C224K5RACTU
C7 1 Ceramic Capacitor 330p 10% 1206 Kemet
C2, C3, C4, C10 4 Ceramic Capacitor 100n 10% 1206 Kemet C1206F104K1RACTU
C9A, C9B, C9C 3 Ceramic Capacitor
47/6.3V
20% 1210 Kemet C1210C476M9PAC7800
C1A, C1B 2 Ceramic Capacitor
2.2/100V
10% 1210 Murata GRM32ER72A225KA35L
L1 1 Inductor SMD
13
20% 13x13 Würth 744355131
D1 1 Switching Diode MMSD4148 SOD123 ON Semiconductor MMSD4148T1G
D2 1 Zener Diode 12V MMSZ4699 SOD123 ON Semiconductor MMSZ4699T1G
Q2 1 Power N−MOSFET NTD3055 DPAK ON Semiconductor NTD3055−150G
Q3 1 Power N−MOSFET NTD24N06 DPAK ON Semiconductor NTD24N06T4G
IO1 1 Synchronous PWM
Buck Controller
NCP1034 SOIC16 ON Semiconductor NCP1034DR2G

NCP1034DR2G

Mfr. #:
Manufacturer:
ON Semiconductor
Description:
Switching Controllers HV PWM BUCK CONTROLR
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet