LM393, LM393E, LM293, LM2903, LM2903E, LM2903V, NCV2903
www.onsemi.com
4
LM293/393 LM2903
Figure 2. Input Bias Current versus
Power Supply Voltage
Figure 3. Input Bias Current versus
Power Supply Voltage
Figure 4. Output Saturation Voltage
versus Output Sink Current
Figure 5. Output Saturation Voltage
versus Output Sink Current
Figure 6. Power Supply Current versus
Power Supply Voltage
Figure 7. Power Supply Current versus
Power Supply Voltage
V
CC
, SUPPLY VOLTAGE (Vdc) V
CC
, SUPPLY VOLTAGE (Vdc)
V
CC
, SUPPLY VOLTAGE (Vdc) V
CC
, SUPPLY VOLTAGE (Vdc)
I
Sink
, OUTPUT SINK CURRENT (mA) I
Sink
, OUTPUT SINK CURRENT (mA)
I , INPUT BIAS CURRENT (nA)
IB
V , SATURATION VOLTAGE (Vdc)
OL
I , SUPPLY CURRENT (mA)
CC
7
0 5 10 15 20 25 30 35 40
13
0 5 10 15 20 25 30 35 40
10
1.0
0.1
0.01
0.001
0.01
0.1 1.0 10 100
1.0
0.8
0.6
0.4
0.2
0
5.0 10 15 20 25 30 35 40
1.2
0.4
10
1.0
0.1
0.01
0.001
0.01 0.1 1.0 10 100
0 5.0 10 15 20 25 30 35 40
T
A
= 0°C
T
A
= +25°C
T
A
= +70° C
T
A
= +125°C
R
L
= R
T
A
= 0° C
T
A
= +25° C
T
A
= +25° C
T
A
= 0° C
T
A
= +25° C
T
A
= -40° C
T
A
= -40° C
T
A
= 0° C
T
A
= +25° C
T
A
= +85° C
1.0
0.8
0.6
I , SUPPLY CURRENT (mA)
CC
V , SATURATION VOLTAGE (Vdc)
OL
I , INPUT BIAS CURRENT (nA)
IB
T
A
= +125°C
R
L
= R
T
A
= -40°C
T
A
= +70°C
T
A
= +125°C
T
A
= -55° C
Out of
Saturation
T
A
= +85° C
Out of
Saturation
T
A
= -55° C
8
9
10
11
12
13
14
T
A
= +85°C
T
A
= +105°C
15
17
19
21
23
25
T
A
= 0°C
T
A
= +25°C
T
A
= -40°C
T
A
= +70°C
T
A
= +125°C
T
A
= +85°C
T
A
= +105°C
LM393, LM393E, LM293, LM2903, LM2903E, LM2903V, NCV2903
www.onsemi.com
5
APPLICATIONS INFORMATION
These dual comparators feature high gain, wide
bandwidth characteristics. This gives the device oscillation
tendencies if the outputs are capacitively coupled to the
inputs via stray capacitance. This oscillation manifests
itself during output transitions (V
OL
to V
OH
). To alleviate
this situation, input resistors <10 k should be used.
The addition of positive feedback (<10 mV) is also
recommended. It is good design practice to ground all
unused pins.
Differential input voltages may be larger than supply
voltage without damaging the comparator’s inputs. Voltages
more negative than −0.3 V should not be used.
Figure 8. Zero Crossing Detector
(Single Supply)
Figure 9. Zero Crossing Detector
(Split Supply)
Figure 10. Free−Running Square−Wave Oscillator
Figure 11. Time Delay Generator
Figure 12. Comparator with Hysteresis
10
D1 prevents input from going negative by more than 0.6 V.
R1 + R2 = R3
R3
R5
for small error in zero crossing.
V
in
10 k
D1
R1
8.2 k
6.8 k
R2
15 k
R3
+15 V
10 m
R5
220 k
R4
220 k
LM393
V
in(min)
[ 0.4 V peak for 1% phase distortion ().
*
+V
CC
10 k
V
in
-V
EE
V
in
V
in(min)
V
CC
V
O
- V
EE

LM393
-
+
LM393
51 k
51 k
51 k
R
L
10 k
V
CC
V
CC
V
CC
V
O
V
O
t
0
1.0 m
0.001 F
-
+
LM393
V
CC
V
CC
V
O
V
in
V
O
+ V
ref
V
ref
V
ref
0
0
0
V
C
t
O
t
``ON'' for t t
O
+ t
where:
t = RC
ȏ n (
V
ref
V
CC
)
R
R
L
V
C
C
LM393
-
+
R
S
V
CC
R
L
V
ref
R1
R2
R
S
= R1 | | R2
V
th1
= V
ref
+
(V
CC
-V
ref
) R1
R1 + R2 + R
L
V
th2
= V
ref
-
(V
ref
-V
O
Low) R1
R1 + R2
R1
tȏ
+
-
LM393
)
*
)
LM393, LM393E, LM293, LM2903, LM2903E, LM2903V, NCV2903
www.onsemi.com
6
MARKING DIAGRAMS
1
8
x = 2 or 3
A = Assembly Location
WL, L = Wafer Lot
YY, Y = Year
WW, W = Work Week
G, G = Pb−Free Package
PDIP−8
CASE 626
SOIC−8
CASE 751
*
*This marking diagram also applies to NCV2903DR2G
Micro8
CASE 846A
LMx93
ALYW
G
1
8
2903V
ALYW
G
1
8
2903
ALYW
G
1
8
LM393NG
AWL
YYWW
1
8
LM2903N
AWL
YYWWG
x93
AYW G
G
1
8
(Note: Microdot may be in either location)
2903
AYW G
G
1
8
903V
AYW G
G
1
8
393E
ALYW
G
1
8
2903E
ALYW
G
1
8

LM393DMR2G

Mfr. #:
Manufacturer:
ON Semiconductor
Description:
Analog Comparators 2-36V Dual Commercial Temp
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union