AON7418

AON7418
30V N-Channel AlphaMOS
General Description Product Summary
V
DS
I
D
(at V
GS
=10V) 50A
R
DS(ON)
(at V
GS
=10V) < 1.7m
R
DS(ON)
(at V
GS
= 4.5V) < 2.8m
Application
100% UIS Tested
100% R
g
Tested
Symbol
V
DS
V
GS
30V
• Latest Trench Power AlphaMOS (αMOS LV) technology
• Very Low RDS(on) at 4.5V
GS
• Low Gate Charge
• High Current Capability
• RoHS and Halogen-Free Compliant
• DC/DC Converters in Computing, Servers, and POL
• Isolated DC/DC Converters in Telecom and Industrial
V±20Gate-Source Voltage
V
Maximum UnitsParameter
Absolute Maximum Ratings T
A
=25°C unless otherwise noted
Drain-Source Voltage 30
G
D
S
Top View
1
2
3
4
8
7
6
5
DFN 3.3x3.3 EP
Top View Bottom View
Pin 1
I
DM
I
AS
E
AS
V
DS
Spike V
SPIKE
T
J
, T
STG
Symbol
t 10s
Steady-State
Steady-State
R
θJC
Maximum Junction-to-Ambient
A
°C/W
R
θJA
16
45
20
Units
Junction and Storage Temperature Range -55 to 150 °C
Thermal Characteristics
Parameter Typ
A
T
A
=25°C
Max
Avalanche energy L=0.05mH
C
109
Power Dissipation
B
P
D
A66Avalanche Current
C
37
Continuous Drain
Current
46
I
DSM
A
T
A
=70°C
I
D
50
39
T
C
=25°C
T
C
=100°C
200Pulsed Drain Current
C
Continuous Drain
Current
G
mJ
4
T
A
=25°C
T
C
=25°C
6.2
33
T
C
=100°C
100ns 36 V
Maximum Junction-to-Case
°C/W
°C/W
Maximum Junction-to-Ambient
1.1
55
1.5
W
Power Dissipation
A
P
DSM
W
T
A
=70°C
83
Rev 0: Oct 2011
www.aosmd.com
Page 1 of 6
AON7418
Symbol Min Typ Max Units
BV
DSS
30 V
V
DS
=30V, V
GS
=0V 1
T
J
=55°C 5
I
GSS
100 nA
V
GS(th)
Gate Threshold Voltage
1.2 1.8 2.2 V
1.4 1.7
T
J
=125°C 2.1 2.6
2.2 2.8 m
g
FS
153 S
V
SD
0.7 1 V
I
S
50 A
C
iss
2994 pF
C
oss
1276 pF
C
rss
196 pF
R
g
0.4 0.9 1.4
Q
g
(10V) 47.7 65 nC
Q
g
(4.5V) 23 31 nC
Q
gs
7.6 nC
Q
gd
10 nC
t
D(on)
10.5 ns
t
r
7.5 ns
t
30.8
ns
V
DS
=V
GS
I
D
=250µA
Electrical Characteristics (T
J
=25°C unless otherwise noted)
Parameter Conditions
STATIC PARAMETERS
Drain-Source Breakdown Voltage
I
D
=250µA, V
GS
=0V
I
DSS
Zero Gate Voltage Drain Current
µA
Gate-Body leakage current
V
DS
=0V, V
GS
= ±20V
DYNAMIC PARAMETERS
R
DS(ON)
Static Drain-Source On-Resistance
V
GS
=10V, I
D
=20A
m
V
GS
=4.5V, I
D
=20A
Forward Transconductance
Input Capacitance
V
GS
=0V, V
DS
=15V, f=1MHz
Output Capacitance
Reverse Transfer Capacitance
V
DS
=5V, I
D
=20A
Diode Forward Voltage
I
S
=1A,V
GS
=0V
Maximum Body-Diode Continuous Current
G
Gate resistance
V
GS
=0V, V
DS
=0V, f=1MHz
SWITCHING PARAMETERS
Total Gate Charge
V
GS
=10V, V
DS
=15V, I
D
=20A
Total Gate Charge
Gate Source Charge
Gate Drain Charge
Turn-On DelayTime
V
GS
=10V, V
DS
=15V, R
L
=0.75,
R
=3
Turn-On Rise Time
Turn-Off DelayTime
t
D(off)
30.8
ns
t
f
8.8 ns
t
rr
20 ns
Q
rr
46
nC
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Body Diode Reverse Recovery Charge
I
F
=20A, dI/dt=500A/µs
R
GEN
=3
Turn-Off DelayTime
Turn-Off Fall Time
Body Diode Reverse Recovery Time
I
F
=20A, dI/dt=500A/µs
A. The value of R
θJA
is measured with the device mounted on 1in
2
FR-4 board with 2oz. Copper, in a still air environment with T
A
=25°C. The
Power dissipation P
DSM
is based on R
θJA
and the maximum allowed junction temperature of 150°C. The value in any given application depends
on the user's specific board design.
B. The power dissipation P
D
is based on T
J(MAX)
=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper
dissipation limit for cases where additional heatsinking is used.
C. Single pulse width limited by junction temperature T
J(MAX)
=150°C.
D. The R
θJA
is the sum of the thermal impedance from junction to case R
θJC
and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming
a maximum junction temperature of T
J(MAX)
=150°C. The SOA curve provides a single pulse rating.
G. The maximum current rating is package limited.
H. These tests are performed with the device mounted on 1 in
2
FR-4 board with 2oz. Copper, in a still air environment with T
A
=25°C.
Rev 0: Oct 2011 www.aosmd.com Page 2 of 6
AON7418
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
0
20
40
60
80
100
0 1 2 3 4 5 6
I
D
(A)
V
GS
(Volts)
Figure 2: Transfer Characteristics (Note E)
0
1
2
3
4
5
0 5 10 15 20 25 30
R
DS(ON)
(m
)
I
D
(A)
Figure 3: On-Resistance vs. Drain Current and Gate
Voltage (Note E)
0.8
1
1.2
1.4
1.6
1.8
2
0 25 50 75 100 125 150 175 200
Normalized On-Resistance
Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
(Note E)
V
GS
=4.5V
I
D
=20A
V
GS
=10V
I
D
=20A
25°C
125°C
V
DS
=5V
V
GS
=4.5V
V
GS
=10V
0
20
40
60
80
100
0 1 2 3 4 5
I
D
(A)
V
DS
(Volts)
Fig 1: On-Region Characteristics (Note E)
V
GS
=2.5V
3V
3.5V
10V
4.5V
40
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
1.0E+02
0.0 0.2 0.4 0.6 0.8 1.0 1.2
I
S
(A)
V
SD
(Volts)
Figure 6: Body-Diode Characteristics (Note E)
25°C
125°C
(Note E)
0
1
2
3
4
5
2 4 6 8 10
R
DS(ON)
(m
)
V
GS
(Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
(Note E)
I
D
=20A
25°C
125°C
Rev 0: Oct 2011 www.aosmd.com Page 3 of 6

AON7418

Mfr. #:
Manufacturer:
Description:
MOSFET N-CH 30V 46A 8DFN
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet