lQ QT110
QT
OUCH
™ S
ENSOR
IC
APPLICATIONS -
Elevator buttons
Consumer electronics
Access systems
Pointing devices
Appliance control
Security systems
Light switches
Industrial panels
The QT110 charge-transfer (“QT’”) sensor IC is a self-contained digital IC used to implement near-proximity or touch sensors. It
projects sense fields through almost any dielectric, like glass, plastic, stone, ceramic, and wood. It can also turn small metal-bearing
objects into intrinsic sensors, making them respond to proximity or touch. This capability coupled with an ability to self-calibrate
continuously leads to entirely new product concepts.
The QT110 is designed specifically for human interfaces, like control panels, appliances, toys, lighting controls, or anywhere a
mechanical switch or button may be found; they may also be used for some material sensing and control applications provided that
the presence duration of objects does not exceed the recalibration timeout interval.
A piezo element can also be connected to create a feedback click sound.
This IC requires only a common inexpensive capacitor in order to function. Average power consumption is under 20µA in most
applications, allowing battery operation.
The QT110 employs digital signal processing techniques pioneered by Quantum, designed to make it survive real-world challenges,
such as ‘stuck sensor’ conditions and signal drift. Sensitivity is digitally determined for the highest possible stability. No external active
components are required for operation.
The device includes several user-selectable built-in features. One, toggle mode, permits on/off touch control for example for light
switch replacement. Another makes the sensor output a pulse instead of a DC level, which allows the device to 'talk' over the power
rail, permitting a simple 2-wire twisted-pair interface. Quantum’s unique HeartBeat™ signal is also included, allowing a host controller
to continuously monitor sensor health.
By using the charge transfer principle, the QT110 delivers a level of performance clearly superior to older technologies in a highly
cost-effective package.
lq
©1999-2004 Quantum Research Group
QT110 R1.04/0405
Less expensive than many mechanical switches
Projects a ‘touch button’ through any dielectric
100% autocal for life - no adjustments required
No active external components
Piezo sounder direct drive for ‘tactile’ click feedback
LED drive for visual feedback
2.5 ~ 5V single supply operation
10µA at 2.5V - very low power drain
Toggle mode for on/off control (via option pins)
10s or 60s auto-recalibration timeout (via option pins)
Pulse output mode (via option pins)
Gain settings in 3 discrete levels
Simple 2-wire operation possible
HeartBeat™ health indicator on output
Pb-Free packages
-QT110-ISG
-40
0
C to +85
0
C
QT110-DG-
0
0
C to +70
0
C
8-PIN DIPSOICT
A
AVAILABLE OPTIONS (Pb-FREE)
Sns2
Vss
Sns1
GainOpt2
Opt1
Out
Vdd 1
2
3
45
6
7
8
QT110
1 - OVERVIEW
The QT110 is a digital burst mode charge-transfer (QT) sensor
designed specifically for touch controls; it includes all hardware
and signal processing functions necessary to provide stable
sensing under a wide variety of changing conditions. Only a
few low cost, non-critical discrete external parts are required for
operation.
Figure 1-1 shows the basic QT110 circuit using the device,
with a conventional output drive and power supply
connections. Figure 1-2 shows a second
configuration using a
common power/signal rail which can be a long twisted pair from
a controller; this configuration uses the built-in pulse mode to
transmit output state to the host controller (QT110 only).
1.1 BASIC OPERATION
The QT110 employs low duty cycle bursts of charge-transfer
cycles to acquire its signal. Burst mode permits power
consumption in the low microamp range, dramatically reduces
EMC problems, and yet permits excellent response time.
Internally the signals are digitally processed to reject impulse
noise, using a 'consensus' filter which requires four
consecutive confirmations of a detection before the output is
activated.
The QT switches and charge measurement hardware functions
are all internal to the QT110 (Figure 1-3). A single-slope
switched capacitor ADC includes both the required QT charge
and transfer switches in a configuration that provides direct
ADC conversion. Vdd is used as the charge reference voltage.
Larger values of Cx cause the charge transferred into Cs to
rise more rapidly, reducing available resolution; as a minimum
resolution is required for proper operation, this can result in
dramatically reduced apparent gain.
The IC is highly tolerant of changes in Cs since it computes the
signal threshold level ratiometrically. Cs is thus non-critical and
can be an X7R type. As Cs changes with temperature, the
internal drift compensation mechanism also adjusts for the drift
automatically.
Piezo sounder drive: The QT110 can drive a piezo sounder
after a detection for feedback. The piezo sounder replaces or
augments the Cs capacitor; this works since piezo sounders
are also capacitors, albeit with a large thermal drift coefficient.
If C
piezo
is in the proper range, no additional capacitor is
required. If C
piezo
is too small, it can simply be ‘topped up’ with a
ceramic capacitor in parallel. The QT110 drives a ~4kHz signal
across SNS1 and SNS2 to make the piezo (if installed) sound a
short tone for 75ms immediately after detection, to act as an
audible confirmation.
Option pins allow the selection or alteration of several other
special features and sensitivity.
1.2 ELECTRODE DRIVE
The internal ADC treats Cs as a floating transfer capacitor; as a
direct result, the sense electrode can in theory be connected to
either SNS1 or SNS2 with no performance difference.
However, the noise immunity of the device is improved by
connecting the electrode to SNS2, preferably via a series
resistor Re (Figure 1-1) to roll off higher harmonic frequencies,
both outbound and inbound.
In order to reduce power consumption and to assist in
discharging Cs between acquisition bursts, a 470K series
resistor Rs should be connected across Cs (Figure 1-1).
The rule Cs >> Cx must be observed for proper operation.
Normally Cx is on the order of 10pF or so, while Cs might be
10nF (10,000pF), or a ratio of about 1:1000.
It is important to minimize the amount of unnecessary stray
capacitance Cx, for example by minimizing trace lengths and
widths and backing off adjacent ground traces and planes so
as keep gain high for a given value of Cs, and to allow for a
larger sensing electrode size if so desired.
The PCB traces, wiring, and any components associated with
or in contact with SNS1 and SNS2 will become touch sensitive
and should be treated with caution to limit the touch area to the
desired location.
1.3 ELECTRODE DESIGN
1.3.1 E
LECTRODE
G
EOMETRY
AND
S
IZE
There is no restriction on the shape of the electrode; in most
cases common sense and a little experimentation can result in
a good electrode design. The QT110 will operate equally well
with long, thin electrodes as with round or square ones; even
random shapes are acceptable. The electrode can also be a
3-dimensional surface or object. Sensitivity is related to
electrode surface area, orientation with respect to the object
being sensed, object composition, and
the ground coupling quality of both the
sensor circuit and the sensed object.
1.3.2 K
IRCHOFF
S
C
URRENT
L
AW
Like all capacitance sensors, the QT110
relies on Kirchoff’s Current Law (Figure
1-5) to detect the change in capacitance
of the electrode. This law as applied to
capacitive sensing requires that the
sensor’s field current must complete a
loop, returning back to its source in
order for capacitance to be sensed.
Although most designers relate to
Kirchoff’s law with regard to hardwired
circuits, it applies equally to capacitive
LQ
2 QT110 R1.04/0405
Figure 1-1 Standard mode options
SENSING
ELECT RODE
Cs
Rs
2nF - 500nF
3
46
5
1
+2.5 ~ +5
72
OUT
OPT1
OPT2
GAIN
SNS1
SNS2
Vss
Vdd
OUTPUT = DC
TIMEOUT = 10 Secs
TOGGLE = OFF
GAIN = HIGH
C
x
8
R
E
Figure 1-2 2-wire operation, self-powered
+
10µF
1N4148
n-ch Mosfet
CMOS
LOGIC
3.5 - 5.5V
1K
Twisted
pair
C
s
8
OUT
OPT1
OPT2
GAIN
SNS1
SNS2
Vss
Vdd
3
46
5
1
72
R
s
SENSING
ELECTRODE
C
x
R
E
field flows. By implication it requires that
the signal ground and the target object
must both be coupled together in some
manner for a capacitive sensor to
operate properly. Note that there is no
need to provide actual hardwired ground
connections; capacitive coupling to
ground (Cx1) is always sufficient, even if
the coupling might seem very tenuous.
For example, powering the sensor via an
isolated transformer will provide ample
ground coupling, since there is
capacitance between the windings
and/or the transformer core, and from
the power wiring itself directly to 'local
earth'. Even when battery powered, just
the physical size of the PCB and the
object into which the electronics is
embedded will generally be enough to
couple a few picofarads back to local
earth.
1.3.3 V
IRTUAL
C
APACITIVE
G
ROUNDS
When detecting human contact (e.g. a fingertip), grounding of
the person is never required. The human body naturally has
several hundred picofarads of ‘free space’ capacitance to the
local environment (Cx3 in Figure 1-3), which is more than two
orders of magnitude greater than that required to create a
return path to the QT110 via earth. The QT110's PCB however
can be physically quite small, so there may be little ‘free space’
coupling (Cx1 in Figure 1-3) between it and the environment to
complete the return path. If the QT110 circuit ground cannot be
earth grounded by wire, for example via the supply
connections, then a ‘virtual capacitive ground’ may be required
to increase return coupling.
A ‘virtual capacitive ground’ can be created by connecting the
QT110’s own circuit ground to:
- A nearby piece of metal or metallized housing;
- A floating conductive ground plane;
- Another electronic device (to which its might be connected
already).
Free-floating ground planes such as metal foils should
maximize exposed surface area in a flat plane if possible. A
square of metal foil will have little effect if it is rolled up or
crumpled into a ball. Virtual ground planes are more effective
and can be made smaller if they are physically bonded to other
surfaces, for example a wall or floor.
1.3.4 S
ENSITIVITY
The QT110 can be set for one of 3 gain levels using option pin
5 (Table 1-1). If left open, the gain setting is high. The
sensitivity change is made by altering the numerical threshold
level required for a detection. It is also a function of other
things: electrode size, shape, and orientation, the composition
and aspect of the object to be sensed, the thickness and
composition of any overlaying panel material, and the degree
of ground coupling of both sensor and object are all influences.
Gain plots of the device are shown on page 9.
The Gain input should never be tied to anything other than
SNS1 or SNS2, or left unconnected (for high gain setting).
In some cases it may be desirable to increase sensitivity
further, for example when using the sensor with very thick
panels having a low dielectric constant.
Sensitivity can often be increased by using a bigger electrode,
reducing panel thickness, or altering panel composition to one
having a higher dielectric constant. Increasing electrode size
can have diminishing returns, as high values of Cx will reduce
sensor gain.
Increasing the electrode's surface area will not substantially
increase touch sensitivity if its diameter is already much larger
in surface area than the object being detected. Metal areas
near the electrode will reduce the field strength and increase
Cx loading and are to be avoided for maximal gain.
Ground planes around and under the electrode and its SNS
trace will cause high Cx loading and destroy gain. The possible
signal-to-noise ratio benefits of ground area are more than
negated by the decreased gain from the circuit, and so ground
areas around electrodes are discouraged. Keep ground,
power, and other signals traces away from the electrodes and
SNS wiring.
The value of Cs has a minimal effect on sensitivity with these
devices, but if the Cs value is too low there can be a sharp
drop-off in sensitivity.
LQ
3 QT110 R1.04/0405
Figure 1-3 Internal Switching & Timing
C
s
C
x
SNS2
SNS1
ELECTRODE
Single-Slope 14-bit
Switched Capacitor ADC
Charge
Amp
Burst Controller
Result
Done
Start
Figure 1-5 Kirchoff's Current Law
Sense Electrode
C
X2
Su rro und ing e nviro nm en t
C
X3
SENSOR
C
X1
Pin 7
Low
Pin 6
Medium
Leave open
High
Tie Pin 5 to:Gain
Table 1-1 Gain Strap Options

QT110-ISG

Mfr. #:
Manufacturer:
Description:
IC SENSOR TOUCH/PROX 1CHAN 8SOIC
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet