10
I
F
(ON)
50 % I
F
(ON)
0 mA
t
PLH
t
PHL
V
OH
1.3 V
V
OL
INPUT I
F
OUTPUT
V
O
Figure 2. Typical logic high output current vs.
temperature.
Figure 3. Output voltage vs. forward input
current.
Figure 4. Typical input diode forward
characteristic.
Figure 1. Typical logic low output voltage vs.
temperature.
Notes:
1. Derate total package power dissipation, P
T
,
linearly above 70°C free air temperature at a
rate of 4.5 mW/°C.
2. Duration of output short circuit time should
not exceed 10 ms.
3. Device considered a two-terminal device:
pins 1, 2, 3, and 4 shorted together and pins
5, 6, 7, and 8 shorted together.
4. The t
PLH
propagation delay is measured
from the 50% point on the leading edge of
the input pulse to the 1.3 V point on the
leading edge of the output pulse. The t
PHL
propagation delay is measured from the
50% point on the trailing edge of the input
pulse to the 1.3 V point on the trailing edge
of the output pulse.
5. When the peaking capacitor is omitted,
propagation delay times may increase by
100 ns.
6. CM
L
is the maximum rate of rise of the
common mode voltage that can be
sustained with the output voltage in the
logic low state (V
O
< 0.8 V). CM
H
is the
maximum rate of fall of the common mode
voltage that can be sustained with the
output voltage in the logic high state
(V
O
> 2.0 V).
I
OH
– HIGH LEVEL OUTPUT CURRENT – mA
-60
-8
T
A
– TEMPERATURE – °C
100
0
-20
-5
20 60-40 0 40 80
-3
-1
-6
V
CC
= 4.5 V
I
F
= 5 mA
-7
-4
-2
V
O
= 2.7 V
V
O
= 2.4 V
I
F
– FORWARD CURRENT – mA
1.1
0.001
V
F
– FORWARD VOLTAGE – V
1.0
1000
1.3
0.01
1.51.2 1.4
0.1
T
A
= 25 °C
10
100
I
F
+
V
F
7. Use of a 0.1 µF bypass capacitor connected
between pins 5 and 8 is recommended.
8. In accordance with UL1577, each
optocoupler is proof tested by applying an
insulation test voltage 4500 V rms for one
second (leakage detection current limit, I
I-O
5 µA). This test is performed before the
100% production test for partial discharge
(Method b) shown in the IEC/EN/DIN EN
60747-5-2 Insulation Characteristics Table, if
applicable.
Figure 5. Test circuit for t
PLH
, t
PHL
, t
r
, and t
f
.
V
OL
– LOW LEVEL OUTPUT VOLTAGE – V
-60
0
T
A
– TEMPERATURE – °C
100
1.0
-20
0.4
20 60-40 0 40 80
0.6
0.8
0.2
V
CC
= 4.5 V
I
F
= 0 mA
V
O
= 6.4 mA
0.1
0.3
0.5
0.7
0.9
V
O
– OUTPUT VOLTAGE – V
0
0
I
F
– INPUT CURRENT – mA
2.0
5
2
1.00.5
3
1
4
I
OL
= 6.4 mA
I
OH
= -2.6 mA
1.5
V
CC
= 4.5 V
T
A
= 25 °C
7
1
4
5
6
8
HCPL-2200
GND
V
CC
5 V
619
INPUT
MONITORING
NODE
PULSE GEN.
t
r
= t
f
=
5 ns
f = 100 kHz
10 % DUTY
CYCLE
V
O
= 5 V
C
2
=
15 pF
THE PROBE AND JIG CAPACITANCES
ARE INCLUDED IN C
1
AND
C
2
.
OUTPUT V
O
MONITORING
NODE
V
CC
R
1
D
1
D
2
5 k
D
3
D
4
2
3
C
1
=
120 pF
R
I
I
F
(ON)
2.15 k
1.6 mA
1.10 k
3 mA
681
5 mA
ALL DIODES ARE 1N916 OR 1N3064.
I
F
11
3.0 V
V
OL
INPUT
V
E
OUTPUT
V
O
t
PZL
t
PLZ
1.3 V
0 V
V
OH
1.5 V
OUTPUT
V
O
S1 OPEN
S2 CLOSED
S1 CLOSED
S2 OPEN
t
PZH
t
PHZ
1.3 V
0 V
0.5 V
S1 AND
S2 CLOSED
0.5 V
S1 AND
S2 CLOSED
1.3 V
7
1
4
5
6
8
HCPL-2200
GND
V
CC
+5 V
619
INPUT V
C
MONITORING
NODE
PULSE
GENERATOR
Z
O
= 50
t
r
= t
f
=
5 ns
C
L
C
L
= 15 pF INCLUDING PROBE
AND JIG CAPACITANCES
.
V
O
V
CC
D
1
D
2
5 k
D
3
D
4
2
3
D
1-4
ARE 1N916 OR 1N3064.
I
F
S1
S2
Figure 10. Typical rise, fall time vs.
temperature.
Figure 8. Typical logic low enable
propagation delay vs. temperature.
Figure 9. Typical logic high enable
propagation delay vs. temperature.
Figure 7. Test circuit for t
PHZ
, t
PZH
, t
PLZ
, and t
PZL
.
Figure 6. Typical propagation delays vs.
temperature.
T
p
– ENABLE PROPAGATION DELAY – ns
-60
0
T
A
– TEMPERATURE – °C
100
100
-20
40
20 60-40 0 40 80
60
80
20
t
PLZ
C
L
= 15 pF
t
PZL
V
CC
20 V
4.5 V
20 V
4.5 V
t
P
– ENABLE PROPAGATION DELAY – ns
-60
0
T
A
– TEMPERATURE – °C
100
150
200
-20
50
20 60-40 0 40 80
100
C
L
= 15 pF
20 V
V
CC
t
PHZ
t
PZH
20 V
4.5 V
4.5 V
t
P
– PROPAGATION DELAY – ns
-60
50
T
A
– TEMPERATURE – °C
100
200
250
-20
100
20 60-40 0 40 80
150
I
F
(mA)
5
3
1.6
1.6
3
5
t
PLH
t
PHL
V
CC
= 5 V
C1 (120 pF) PEAKING
CAPACITOR IS USED.
SEE FIGURE 5.
t
r
,
t
f
– RISE, FALL TIME – ns
-60
0
T
A
– TEMPERATURE – °C
100
120
-20
40
20 60-40 0 40 80
80
100
20
V
CC
= 5 V
C
2
= 15 pF
t
r
60
t
f
18
27
36
45
HCPL-2200
DATA
INPUT
D1 (1N4150) REQUIRED FOR
ACTIVE PULL-UP DRIVER.
1.1 k
V
CC1
(+5 V)
V
CC
GND
D1
TTL OR
LSTTL
50 V
OUTPUT
V
O
* SEE NOTE 6.
0 V
V
OH
V
OL
V
O
(MAX.)*
V
O
(MIN.)*
SWITCH AT A: I
F
= 1.6 mA
SWITCH AT B: I
F
= 0 mA
V
CM
Figure 11. Test circuit for common mode transient immunity and typical waveforms.
Figure 13. Recommended LSTTL to LSTTL circuit.
Figure 15. Recommended LED drive circuit.
Figure 12. Thermal derating curve,
dependence of safety limiting value with case
temperature per IEC/EN/DIN EN 60747-5-2.
Figure 14. LSTTL to CMOS interface circuit.
Figure 16. Series LED drive with open collector gate (4.7 k resistor
dhunts I
OH
from the LED).
*The 120 pF capacitor may be omitted in applications where 500 ns propagation delay is sufficient.
7
1
4
5
6
8
HCPL-2200
0.1 µF
BYPASS
OUTPUT V
O
MONITORING
NODE
V
CC
R
IN
2
3
V
FF
A
B
+
V
CM
PULSE GENERATOR
V
CC
GND
OUTPUT POWER – P
S
, INPUT CURRENT – I
S
0
0
T
S
– CASE TEMPERATURE – °C
20050
400
12525 75 100 150
600
800
200
100
300
500
700
P
S
(mW)
I
S
(mA)
HCPL-2219 OPTION 060 ONLY
175
120 pF
18
27
36
45
1
2
HCPL-2200
DATA
INPUT
TTL OR
LSTTL
V
CC2
(+5 V)
UP TO 16
LSTTL
LOADS
OR 4 TTL
LOADS
1.1
k
V
CC1
(+5 V)
DATA
OUTPUT
TOTEM
POLE
OUTPUT
GATE
V
CC
GND
120 pF (OPTIONAL*)
18
27
36
45
HCPL-2200
DATA
INPUT
TTL OR
LSTTL
1.1
k
V
CC
(+5 V)
OPEN
COLLECTOR
GATE
V
CC
GND
4.7 k
120 pF (OPTIONAL*)
18
27
36
45
1
2
HCPL-2200
DATA
INPUT
TTL OR
LSTTL
V
CC2
(4.5 TO 20 V)
1.1
k
V
CC1
(+5 V)
DATA
OUTPUT
TOTEM
POLE
OUTPUT
GATE
V
CC
GND
CMOS
V
CC2
5 V
10 V
15 V
20 V
R
L
1.1 K
2.37 K
3.83 K
5.11 K
R
L
12

HCPL-2200-000E

Mfr. #:
Manufacturer:
Broadcom / Avago
Description:
High Speed Optocouplers 5MBd 1Ch 1.6mA
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union