1
Features
Single 2.7V - 3.6V Supply
Serial Peripheral Interface (SPI) Compatible
20 MHz Max Clock Frequency
Page Program Operation
Single Cycle Reprogram (Erase and Program)
8192 Pages (528 Bytes/Page) Main Memory
Supports Page and Block Erase Operations
Two 528-byte SRAM Data Buffers – Allows Receiving of Data
while Reprogramming of Nonvolatile Memory
Continuous Read Capability through Entire Array
Ideal for Code Shadowing Applications
Low Power Dissipation
4 mA Active Read Current Typical
2 µA CMOS Standby Current Typical
Hardware Data Protection Feature
100% Compatible to AT45DB321
5.0V-tolerant Inputs: SI, SCK, CS, RESET and WP Pins
Commercial and Industrial Temperature Ranges
Description
The AT45DB321B is a 2.7-volt only, serial interface Flash memory ideally suited for
a wide variety of digital voice-, image-, program code- and data-storage applications.
Its 34,603,008 bits of memory are organized as 8192 pages of 528 bytes each. In
addition to the main memory, the AT45DB321B also contains two SRAM
data buffers of 528 bytes each. The buffers allow receiving of data while a page in the
main memory is being reprogrammed, as well as reading or writing a continuous data
32-megabit
2.7-volt Only
DataFlash
®
AT45DB321B
TSOP Top View
Type 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
RDY/BUSY
RESET
WP
NC
NC
NC
VCC
GND
NC
NC
NC
NC
CS
SCK
SI
SO
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
CBGA Top View through Package
A
B
C
D
E
F
G
H
J
1
2345
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
VCC
WP
RESET
NC
NC
NC
NC
NC
NC
GND
RDY/BSY
SI
NC
NC
NC
NC
NC
NC
SCK
CS
SO
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
Pin Configurations
Pin Name Function
CS
Chip Select
SCK Serial Clock
SI Serial Input
SO Serial Output
WP
Hardware Page Write Protect Pin
RESET
Chip Reset
RDY/BUSY
Ready/Busy
DataFlash Card
(1)
Note: 1. See AT45DCB004 Datasheet
7654321
SOIC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
28
27
26
25
24
23
22
21
20
19
18
17
16
15
GND
NC
NC
CS
SCK
SI
SO
NC
NC
NC
NC
NC
NC
NC
VCC
NC
NC
WP
RESET
RDY/BUSY
NC
NC
NC
NC
NC
NC
NC
NC
Rev. 2223D–DFLASH–10/02
2
AT45DB321B
2223D–DFLASH–10/02
stream. EEPROM emulation (bit or byte alterability) is easily handled with a self-con-
tained three step Read-Modify-Write operation. Unlike conventional Flash memories
that are accessed randomly with multiple address lines and a parallel interface, the
DataFlash uses a SPI serial interface to sequentially access its data. DataFlash sup-
ports SPI mode 0 and mode 3. The simple serial interface facilitates hardware layout,
increases system reliability, minimizes switching noise, and reduces package size and
active pin count. The device is optimized for use in many commercial and industrial
applications where high density, low pin count, low voltage, and low power are essential.
The device operates at clock frequencies up to 20 MHz with a typical active read current
consumption of 4 mA.
To allow for simple in-system reprogrammability, the AT45DB321B does not require
high input voltages for programming. The device operates from a single power supply,
2.7V to 3.6V, for both the program and read operations. The AT45DB321B is enabled
through the chip select pin (CS
) and accessed via a three-wire interface consisting of
the Serial Input (SI), Serial Output (SO), and the Serial Clock (SCK).
All programming cycles are self-timed, and no separate erase cycle is required before
programming.
When the device is shipped from Atmel, the most significant page of the memory array
may not be erased. In other words, the contents of the last page may not be filled with
FFH.
Block Diagram
Memory Array
To provide optimal flexibility, the memory array of the AT45DB321B is divided into three
levels of granularity comprising of sectors, blocks, and pages. The Memory Architecture
Diagram illustrates the breakdown of each level and details the number of pages per
sector and block. All program operations to the DataFlash occur on a page-by-page
basis; however, the optional erase operations can be performed at the block or page
level.
FLASH MEMORY ARRAY
PAGE (528 BYTES)
BUFFER 2 (528 BYTES)BUFFER 1 (528 BYTES)
I/O INTERFACE
SCK
CS
RESET
VCC
GND
RDY/BUSY
WP
SOSI
3
AT45DB321B
2223D–DFLASH–10/02
Memory Architecture Diagram
Device Operation The device operation is controlled by instructions from the host processor. The list of
instructions and their associated opcodes are contained in Tables 1 through 4. A valid
instruction starts with the falling edge of CS
followed by the appropriate 8-bit opcode
and the desired buffer or main memory address location. While the CS
pin is low, tog-
gling the SCK pin controls the loading of the opcode and the desired buffer or main
memory address location through the SI (serial input) pin. All instructions, addresses
and data are transferred with the most significant bit (MSB) first.
Buffer addressing is referenced in the datasheet using the terminology BFA9 - BFA0 to
denote the ten address bits required to designate a byte address within a buffer. Main
memory addressing is referenced using the terminology PA12 - PA0 and BA9 - BA0
where PA12 - PA0 denotes the 13 address bits required to designate a page address
and BA9 - BA0 denotes the ten address bits required to designate a byte address within
the page.
Read Commands By specifying the appropriate opcode, data can be read from the main memory or from
either one of the two data buffers. The DataFlash supports two categories of read
modes in relation to the SCK signal. The differences between the modes are in respect
to the inactive state of the SCK signal as well as which clock cycle data will begin to be
output. The two categories, which are comprised of four modes total, are defined as
Inactive Clock Polarity Low or Inactive Clock Polarity High and SPI Mode 0 or SPI
Mode 3. A separate opcode (refer to Table 1 on page 10 for a complete list) is used to
select which category will be used for reading. Please refer to the “Detailed Bit-level
Read Timing” diagrams in this datasheet for details on the clock cycle sequences for
each mode.
CONTINUOUS ARRAY READ: By supplying an initial starting address for the main
memory array, the Continuous Array Read command can be utilized to sequentially
read a continuous stream of data from the device by simply providing a clock signal; no
additional addressing information or control signals need to be provided. The DataFlash
incorporates an internal address counter that will automatically increment on every clock
SECTOR 0 = 4224 bytes (4K + 128)
SECTOR 1 = 266,112 bytes (252K + 8064)
SECTOR 15 = 270,336 bytes (256K + 8K)
Block = 4224 bytes
(4K + 128)
8 Pages
SECTOR 0
SECTOR 1
Page = 528 bytes
(512 + 16)
PAGE 0
PAGE 1
PAGE 6
PAGE 7
PAGE 8
PAGE 9
PAGE 8190
PAGE 8191
BLOCK 0
PAGE 14
PAGE 15
PAGE 16
PAGE 17
PAGE 18
PAGE 8189
BLOCK 1
SECTOR ARCHITECTURE BLOCK ARCHITECTURE PAGE ARCHITECTURE
BLOCK 0
BLOCK 1
BLOCK 62
BLOCK 63
BLOCK 64
BLOCK 65
BLOCK 1022
BLOCK 1023
BLOCK 126
BLOCK 127
BLOCK 128
BLOCK 129
SECTOR 2
SECTOR 2 = 270,336 bytes (256K + 8K)
SECTOR 16 = 270,336 bytes (256K + 8K)
BLOCK 2

AT45DB321B-CI

Mfr. #:
Manufacturer:
Description:
IC FLASH 32M SPI 20MHZ 44CBGA
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union