AD620
Rev. H | Page 15 of 20
Precision V-I Converter
The AD620, along with another op amp and two resistors,
makes a precision current source (Figure 40). The op amp
buffers the reference terminal to maintain good CMR. The
output voltage, V
X
, of the AD620 appears across R1, which
converts it to a current. This current, less only the input bias
current of the op amp, then flows out to the load.
AD620
R
G
–V
S
V
IN+
V
IN–
LOAD
R1
I
L
V
x
I =
L
R1
=
IN+
[(V ) – (V )] G
IN–
R1
6
5
+ V
X
4
2
1
8
3
7
+V
S
AD705
00775-0-044
Figure 40. Precision Voltage-to-Current Converter (Operates on 1.8 mA, ±3 V)
GAIN SELECTION
The AD620 gain is resistor-programmed by R
G
, or more
precisely, by whatever impedance appears between Pins 1 and 8.
The AD620 is designed to offer accurate gains using 0.1% to 1%
resistors. Table 5 shows required values of R
G
for various gains.
Note that for G = 1, the R
G
pins are unconnected (R
G
= ∞). For
any arbitrary gain, R
G
can be calculated by using the formula:
1
4.49
Ω
=
G
k
R
G
To minimize gain error, avoid high parasitic resistance in series
with R
G
; to minimize gain drift, R
G
should have a low TC—less
than 10 ppm/°C—for the best performance.
Table 5. Required Values of Gain Resistors
1% Std Table
Value of R
G
(Ω)
Calculated
Gain
0.1% Std Table
Value of R
G
(Ω )
Calculated
Gain
49.9 k 1.990 49.3 k 2.002
12.4 k 4.984 12.4 k 4.984
5.49 k 9.998 5.49 k 9.998
2.61 k 19.93 2.61 k 19.93
1.00 k 50.40 1.01 k 49.91
499 100.0 499 100.0
249 199.4 249 199.4
100 495.0 98.8 501.0
49.9 991.0 49.3 1,003.0
INPUT AND OUTPUT OFFSET VOLTAGE
The low errors of the AD620 are attributed to two sources,
input and output errors. The output error is divided by G when
referred to the input. In practice, the input errors dominate at
high gains, and the output errors dominate at low gains. The
total V
OS
for a given gain is calculated as
Total Error RTI = input error + (output error/G)
Total Error RTO = (input error × G) + output error
REFERENCE TERMINAL
The reference terminal potential defines the zero output voltage
and is especially useful when the load does not share a precise
ground with the rest of the system. It provides a direct means of
injecting a precise offset to the output, with an allowable range
of 2 V within the supply voltages. Parasitic resistance should be
kept to a minimum for optimum CMR.
INPUT PROTECTION
The AD620 safely withstands an input current of ±60 mA for
several hours at room temperature. This is true for all gains and
power on and off, which is useful if the signal source and
amplifier are powered separately. For longer time periods, the
input current should not exceed 6 mA.
For input voltages beyond the supplies, a protection resistor
should be placed in series with each input to limit the current to
6 mA. These can be the same resistors as those used in the RFI
filter. High values of resistance can impact the noise and AC
CMRR performance of the system. Low leakage diodes (such as
the BAV199) can be placed at the inputs to reduce the required
protection resistance.
AD620
R
REF
R
+SUPPL
–SUPPLY
V
OUT
+IN
–IN
00775-0-052
Figure 41. Diode Protection for Voltages Beyond Supply
RF INTERFERENCE
All instrumentation amplifiers rectify small out of band signals.
The disturbance may appear as a small dc voltage offset. High
frequency signals can be filtered with a low pass R-C network
placed at the input of the instrumentation amplifier. Figure 42
demonstrates such a configuration. The filter limits the input
AD620
Rev. H | Page 16 of 20
signal according to the following relationship:
)2(2
1
C
D
DIFF
CCR
FilterFreq
+π
=
C
CM
RC
FilterFreq
π
=
2
1
where C
D
≥10C
C.
C
D
affects the difference signal. C
C
affects the common-mode
signal. Any mismatch in R × C
C
degrades the AD620 CMRR. To
avoid inadvertently reducing CMRR-bandwidth performance,
make sure that C
C
is at least one magnitude smaller than C
D
.
The effect of mismatched C
C
s is reduced with a larger C
D
:C
C
ratio.
499Ω
AD620
+
V
OUT
R
R
C
C
C
D
C
C
+IN
–IN
REF
–15V
0.1μ F1μ F0
+15V
0.1μ F1μ F0
00775-0-045
Figure 42. Circuit to Attenuate RF Interference
COMMON-MODE REJECTION
Instrumentation amplifiers, such as the AD620, offer high
CMR, which is a measure of the change in output voltage when
both inputs are changed by equal amounts. These specifications
are usually given for a full-range input voltage change and a
specified source imbalance.
For optimal CMR, the reference terminal should be tied to a
low impedance point, and differences in capacitance and
resistance should be kept to a minimum between the two
inputs. In many applications, shielded cables are used to
minimize noise; for best CMR over frequency, the shield
should be properly driven. Figure 43 and Figure 44 show active
data guards that are configured to improve ac common-mode
rejections by “bootstrapping” the capacitances of input cable
shields, thus minimizing the capacitance mismatch between the
inputs.
REFERENCE
V
OUT
AD620
100
Ω
100
Ω
– INPUT
+ INPUT
AD648
R
G
–V
S
+V
S
–V
S
00775-0-046
Figure 43. Differential Shield Driver
100Ω
– INPUT
+ INPUT
REFERENCE
V
OUT
AD620
–V
S
+V
S
2
R
G
2
R
G
AD548
00775-0-047
Figure 44. Common-Mode Shield Driver
GROUNDING
Since the AD620 output voltage is developed with respect to the
potential on the reference terminal, it can solve many
grounding problems by simply tying the REF pin to the
appropriate “local ground.
To isolate low level analog signals from a noisy digital
environment, many data-acquisition components have separate
analog and digital ground pins (Figure 45). It would be
convenient to use a single ground line; however, current
through ground wires and PC runs of the circuit card can cause
hundreds of millivolts of error. Therefore, separate ground
returns should be provided to minimize the current flow from
the sensitive points to the system ground. These ground returns
must be tied together at some point, usually best at the ADC
package shown in Figure 45.
DIGITAL P.S.
+5VC
ANALOG P.S.
+15V C –15V
AD574A
DIGITAL
DATA
OUTPUT
+
1
μ
F
AD620
0.1
μ
F
AD585
S/H
ADC
0.1
μ
F
1
μ
F
1
μ
F
00775-0-048
Figure 45. Basic Grounding Practice
AD620
Rev. H | Page 17 of 20
GROUND RETURNS FOR INPUT BIAS CURRENTS
V
OUT
– INPUT
+ INPUT
R
G
LOAD
TO POWER
SUPPLY
GROUND
REFERENCE
+V
S
–V
S
AD620
00775-0-050
Input bias currents are those currents necessary to bias the
input transistors of an amplifier. There must be a direct return
path for these currents. Therefore, when amplifying “floating”
input sources, such as transformers or ac-coupled sources, there
must be a dc path from each input to ground, as shown in
Figure 46, Figure 47, and Figure 48. Refer to A Designers Guide
to Instrumentation Amplifiers (free from Analog Devices) for
more information regarding in-amp applications.
V
OUT
AD620
– INPUT
R
G
TO POWER
SUPPLY
GROUND
REFERENCE
+ INPUT
+V
S
–V
S
LOAD
00775-0-049
Figure 47. Ground Returns for Bias Currents with Thermocouple Inputs
100k
Ω
V
OUT
AD620
– INPUT
+ INPUT
R
G
LOAD
TO POWER
SUPPLY
GROUND
REFERENCE
100k
Ω
–V
S
+V
S
00775-0-051
Figure 46. Ground Returns for Bias Currents with Transformer-Coupled Inputs
Figure 48. Ground Returns for Bias Currents with AC-Coupled Inputs

AD620ARZ-REEL7

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Instrumentation Amplifiers AD620 Amplifier Low Drift Low Power
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union