MAX66020
ISO/IEC 14443 Type B-Compliant
1Kb Memory Fob
16 ______________________________________________________________________________________
TERM DESCRIPTION
ACTIVE One of the slaves six states. In this state, the memory and control function commands and deselect apply.
ADC Application Data Coding. 2-Bit field of the 3rd protocol info byte of the ATQB response.
AFI Application Family Identifier. 1-Byte field used in the REQB/WUPB request to preselect slaves.
ATQB Answer to Request, Type B. Response to REQB, WUPB, and SLOT-MARKER command.
ATTRIB Slave Selection Command, Type B. Used to transition a slave from READY to the ACTIVE state.
BPSK Binary Phase-Shift Keying Modulation
CID
Card Identifier. 4-Bit temporary identification number assigned to a slave through the ATTRIB command, used
in conjunction with the block transmission protocol.
EOF End of Frame
DESELECT Slave Deselection Command. Transitions the slave from the ACTIVE state to the HALT state.
fc Carrier Frequency = 13.56MHz
FO Frame Option. 2-Bit field of the 3rd protocol info byte of the ATQB response.
fs Subcarrier Frequency = f
c
/16 = 847.5kHz
FWI Frame-Waiting Time Integer. 4-bit field of the 3rd protocol info byte of the ATQB response.
FWT Frame-Waiting Time. Calculated from FWI.
HALT One of the slaves six states. The master puts a slave in this state to park it.
HLTB Halt Command, Type B
IDLE One of the slave’s six states. In this state, the slave has power and is waiting for action.
INF Information Field for Higher Layer Protocol (per ISO/IEC 14443-4)
MBLI
Maximum Buffer Length Index of Slave (per ISO/IEC 14443-4). 4-Bit field of the first protocol info byte of the
ATQB response.
N Number of Anticollision Slots (or response probability per slot)
NAD Node Address (per ISO/IEC 14443-4)
POWER-OFF One of the slave’s six states. In this state, the slave has no power and consequently cannot do anything.
PUPI Pseudo Unique Identifier. 4-Byte field of the ATQB response.
R 4-Bit Random Number Chosen by a Slave When Processing the REQB or WUPB Command
READY
One of the slave’s six states; official name is READY-DECLARED SUBSTATE. In this state, the slave has
identified itself and is waiting for transition to ACTIVE (memory and control functions) or HALT (parking).
REQB Request Command, Type B. Used to probe the RF field for the presence of slave devices.
RF Radio Frequency
S Slot Number. 4-Bit field sent to slave with SLOT-MARKER command.
SLOT-MARKER Command used in the time-slot approach to identify slaves in the RF field
SOF Start of Frame
TR0 Guard Time per ISO/IEC 14443-2
TR1 Synchronization Time per ISO/IEC 14443-2
WAITING FOR
SLOT-MARKER
One of the slave’s six states; official name is READY-REQUESTED SUBSTATE. In this state, the slave is
waiting to be called by its random number R to transition to READY.
WUPB Wake-Up Command, Type B. Similar to REQB, required to wake up slaves in the HALT state.
Table 5. ISO/IEC 14443 Type B Technical Terms
MAX66020
ISO/IEC 14443 Type B-Compliant
1Kb Memory Fob
______________________________________________________________________________________ 17
ISO/IEC 14443 Type B States and
Transitions
POWER-OFF State
This state applies if the slave is outside the master’s RF
field. A slave transitions to the POWER-OFF state when
leaving the power-delivering RF field. When entering
the RF field, the slave automatically transitions to the
IDLE state.
IDLE State
The purpose of the IDLE state is to have the slave pop-
ulation ready to participate in the anticollision protocol.
When transitioning to the IDLE state, the slave does not
generate any response. To maintain this state, the slave
must continuously receive sufficient power from the
master’s RF field to prevent transitioning into the
POWER-OFF state. While in the IDLE state, the slave lis-
tens to the commands that the master sends, but reacts
only on the REQB and WUPB commands, provided that
they include a matching AFI value. If the master sends
a command with a nonmatching AFI byte (conditions A
and a), a transition to IDLE is also possible from the
HALT state, the READY state, and the WAITING FOR
SLOT-MARKER state. From IDLE, a slave can transition
to the higher states READY (condition B) or WAITING
FOR SLOT-MARKER (condition S). For details, see the
REQB/WUPB
command description in the
Network
Function Commands
section.
WAITING FOR SLOT-MARKER State
(READY REQUESTED SUBSTATE)
The WAITING FOR SLOT-MARKER state is used in the
time-slot anticollision approach. A slave can transition
to WAITING FOR SLOT-MARKER from the IDLE, HALT,
or READY state upon receiving a REQB or WUPB com-
mand with a matching AFI (conditions S and s), provid-
ed that both the number of slots specified in the
REQB/WUPB command and the random number that
the slave has chosen are different from 1. To maintain
this state, the slave must continuously receive sufficient
power from the master’s RF field to prevent transitioning
into the POWER-OFF state. A slave in the WAITING
FOR SLOT-MARKER state listens to the commands that
the master sends, but reacts only on the REQB, WUPB,
and SLOT-MARKER commands. From WAITING FOR
SLOT-MARKER, a slave can transition to the higher
state READY under condition B (bypassing the Slot-
MARKER), or MS (matching slot, SLOT-MARKER com-
mand with a slot number that matches the random
number R). Condition A (AFI mismatch) returns the
slave to the IDLE state.
READY State (READY DECLARED SUBSTATE)
The READY state applies to a slave that has met the cri-
teria in the anticollision protocol to send an ATQB
response. A slave can transition to READY from IDLE or
HALT (conditions B and b) or from WAITING FOR
SLOT-MARKER (conditions B and MS). When transition-
ing to the READY state, the slave transmits an ATQB
response. To maintain this state, the slave must contin-
uously receive sufficient power from the master’s RF
field to prevent transitioning into the POWER-OFF state.
A slave in the READY state listens to the commands
that the master sends, but reacts only on the REQB,
WUPB, ATTRIB and HLTB commands. From READY, a
slave can transition to ACTIVE (ATTRIB command with
matching PUPI), HALT (HLTB command with matching
PUPI), or IDLE (condition A).
HALT State
The HALT state is used to silence slaves that have
been identified and shall no longer participate in the
anticollion protocol. This state is also used to park
slaves after communication in the ACTIVE state was
completed. A slave transitions to the HALT state either
from READY (HLTB command with matching PUPI) or
from ACTIVE (DESELECT command with matching
CID). When transitioning to the HALT state, the slave
transmits a response that confirms the transition. To
maintain this state, the slave must continuously receive
sufficient power from the master’s RF field to prevent
transitioning into the POWER-OFF state. The normal
way out of the HALT state is through the WUPB com-
mand. From HALT, a slave can transition to IDLE (con-
dition a), READY (condition b), or WAITING FOR
SLOT-MARKER (condition s).
ACTIVE State
The ACTIVE state enables the slave to process com-
mands sent through the block transmission protocol.
When entering the ACTIVE state, the slave confirms the
transition with a response. The only way for a slave to
transition to the ACTIVE state is from the READY state
(ATTRIB command with a matching PUPI). In the
ATTRIB command, the master assigns a 4-bit CID that
is used to address one of multiple slaves that could all
be in the ACTIVE state. To maintain this state, the slave
must continuously receive sufficient power from the
master’s RF field to prevent transitioning into the
POWER-OFF state. The normal way out of the ACTIVE
state is through the DESELECT command, which transi-
tions the slave to the HALT state.
MAX66020
ISO/IEC 14443 Type B-Compliant
1Kb Memory Fob
18 ______________________________________________________________________________________
Network Function Commands
To transition slaves devices between states, the
ISO/IEC 14443 Type B standard defines six network
function commands, called REQB, WUPB, SLOT-
MARKER, HLTB, ATTRIB, and DESELECT. The master
issues the commands in the form of request frames and
the slaves respond by transmitting response frames.
With network function commands, command code,
parameters and response are embedded between SOF
and CRC. This section describes the format of the
response and request frames and the coding of the
data fields inside the frames as detailed as necessary
to operate the MAX66020. Not all of the fields and
cases that the standard defines are relevant for the
MAX66020. For a full description of those fields refer to
the ISO/IEC 14443-3, Section 7.
REQB/WUPB Command
The REQUEST command, Type B (REQB) and the
WAKEUP command, Type B (WUPB) are the general
tools for the master to probe the RF field for the presence
of slave devices and to preselect them for action based
on the value of the application family identifier (AFI). An
ISO/IEC 14443 Type B-compliant slave watches for these
commands while in the IDLE state, WAITING FOR SLOT-
MARKER state, and READY state. In the HALT state, the
slave only acts upon receiving a WUPB command. The
REQB or WUPB command is transmitted as a frame, as
shown in Figure 18. Besides the command code, the
request includes two parameters, AFI and PARAM. The
response to REQB/WUPB is named ATQB. See the
ATQB Response
section for details.
The ISO/IEC 14443 standard defines rules for the
assignment of the AFI codes and the behavior of the
slaves when receiving a REQB/WUPB request. If the
request specifies an AFI of 00h, a slave must process
the command regardless of its actual AFI value. If the
least significant nibble of the AFI in the request is
0000b, the slave must process the command only if the
most significant nibble of the AFI sent by the master
matches the most significant nibble of the slave’s AFI.
For all other AFI values, the slave processes the com-
mand only if the AFI in the request and the slave match.
The AFI code can be programmed and locked by the
user. For details see the
Memory and Control Function
Commands
section.
The bit assignments of the PARAM byte are shown in
Figure 19. Bits 5 to 8 are reserved and must be trans-
mitted as 0. Bit 4, if 0, indicates that the request is a
REQB command; bit 4, if 1, defines a WUPB command.
Bits 1, 2, and 3 specify the number of slots (N) to be
used in the anticollision protocol. Table 6 shows the
codes. In the case of N = 1, the SLOT-MARKER com-
mand does not apply and all slaves with a matching AFI
transition to the READY state. With multiple slaves in the
field, this leads to a data collision, since the response
frames are transmitted simultaneously. If N is larger than
1, each slave in the field selects its own 4-bit random
number, R, in the range of 1 to N. A slave that happens
COMMANDSOF AFI CRCPARAM EOF
05h (1 BYTE) (2 BYTES)(1 BYTE)
Figure 18. REQB/WUPB Request Frame
BIT 8 BIT 7 BIT 6 BIT 5 BIT 4
REQB/
WUPB
BIT 3 BIT 2 BIT 1
MSb LSb
0 0 00
(FIXED) N
Figure 19. Bit Assignments for PARAM Byte
BIT 3 BIT 2 BIT 1 N
0 0 0 1
0 0 1 2
0 1 0 4
0 1 1 8
1 0 0 16
1 0 1 (RESERVED)
1 1 X (RESERVED)
Table 6. Number of Slots Codes

MAX66020K-000AA+

Mfr. #:
Manufacturer:
Maxim Integrated
Description:
RFID Transponders ISO/IEC 14443 Type B Comp 1Kb Mem Fo
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet