MAX6956
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or
28-Port LED Display Driver and I/O Expander
______________________________________________________________________________________ 19
The recommended value of R
ISET
is 39k.
The recommended value of R
ISET
is the minimum
allowed value, since it sets the display driver to the
maximum allowed segment current. R
ISET
can be a
higher value to set the segment current to a lower maxi-
mum value where desired. The user must also ensure
that the maximum current specifications of the LEDs
connected to the driver are not exceeded.
The drive current for each segment can be controlled
through programming either the Global Current register
(Table 11) or Individual Segment Current registers
(Tables 12, 13, and 14), according to the setting of the
Current Control bit of the Configuration register (Table 9).
These registers select the LED’s constant-current drive
from 16 equal fractions of the maximum segment cur-
rent. The current difference between successive current
steps, I
STEP
, is therefore determined by the formula:
I
STEP
= I
SEG
/ 16
If I
SEG
= 24mA, then I
STEP
= 24mA / 16 = 1.5mA.
Applications Information
Driving Bicolor and Tricolor LEDs
Bicolor digits group a red and a green die together for
each display element, so that the element can be lit
red, green (or orange), depending on which die (or
both) is lit. The MAX6956 allows each segment’s cur-
rent to be set individually from 1/16th (minimum current
and LED intensity) to 16/16th (maximum current and
LED intensity), as well as off (zero current). Thus, a
bicolor (red-green) segment pair can be set to 289
color/intensity combinations. A discrete or CA tricolor
(red-green-yellow or red-green-blue) segment triad can
be set to 4913 color/intensity combinations.
Power Dissipation Issues
Each MAX6956 port can sink a current of 24mA into an
LED with a 2.4V forward-voltage drop when operated
from a supply voltage of at least 3.0V. The minimum
voltage drop across the internal LED drivers is there-
fore (3.0V - 2.4V) = 0.6V. The MAX6956 can sink 28 x
24mA = 672mA when all outputs are operating as LED
Table 14. Odd Individual Segment Current Format
LED
DRIVE
FRACTION
SEGMENT
CONSTANT
CURRENT WITH
R
ISET
= 39k (mA)
ADDRESS
CODE (HEX)
D7 D6 D5 D4 D3 D2 D1 D0 HEX CODE
1/16 1.5 0x12 to 0x1F 0 0 0 0 0x0X
2/16 3 0x12 to 0x1F 0 0 0 1 0x1X
3/16 4.5 0x12 to 0x1F 0 0 1 0 0x2X
4/16 6 0x12 to 0x1F 0 0 1 1 0x3X
5/16 7.5 0x12 to 0x1F 0 1 0 0 0x4X
6/16 9 0x12 to 0x1F 0 1 0 1 0x5X
7/16 10.5 0x12 to 0x1F 0 1 1 0 See Table 13. 0x6X
8/16 12 0x12 to 0x1F 0 1 1 1 0x7X
9/16 13.5 0x12 to 0x1F 1 0 0 0 0x8X
10/16 15 0x12 to 0x1F 1 0 0 1 0x9X
11/16 16.5 0x12 to 0x1F 1 0 1 0 0xAX
12/16 18 0x12 to 0x1F 1 0 1 1 0xBX
13/16 19.5 0x12 to 0x1F 1 1 0 0 0xCX
14/16 21 0x12 to 0x1F 1 1 0 1 0xDX
15/16 22.5 0x12 to 0x1F 1 1 1 0 0xEX
16/16 24 0x12 to 0x1F 1 1 1 1 0xFX
MAX6956
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or
28-Port LED Display Driver and I/O Expander
20 ______________________________________________________________________________________
GPIO INPUT
CONDITIONING
P31
P30
P29
P28
P27
P26
P25
P24
GPIO/PORT OUTPUT LATCH
GPIO INPUT
CONDITIONING
GPIO/PORT OUTPUT LATCH
GPIO INPUT
CONDITIONING
GPIO/PORT OUTPUT LATCH
GPIO INPUT
CONDITIONING
GPIO/PORT OUTPUT LATCH
GPIO INPUT
CONDITIONING
GPIO/PORT OUTPUT LATCH
GPIO INPUT
CONDITIONING
GPIO/PORT OUTPUT LATCH
GPIO INPUT
CONDITIONING
GPIO/PORT OUTPUT LATCH
D Q
D Q
D Q
D Q
D Q
D Q
D Q
CLOCK PULSE WHEN WRITING CONFIGURATION REGISTER WITH M BIT SET
OR
CONFIGURATION REGISTER M BIT = 1
R
S
GPIO IN
GPIO/PORT OUT
CLOCK PULSE AFTER EACH READ ACCESS TO MASK REGISTER
INT STATUS STORED AS MSB OF MASK REGISTER
MASK REGISTER BIT 6
MASK REGISTER BIT 5
MASK REGISTER BIT 4
MASK REGISTER BIT 3
MASK REGISTER BIT 2
MASK REGISTER BIT 1
MASK REGISTER LSB
GPIO IN
GPIO/PORT OUT
GPIO IN
GPIO/PORT OUT
GPIO IN
GPIO/PORT OUT
GPIO IN
GPIO/PORT OUT
GPIO IN
GPIO/PORT OUT
GPIO IN
GPIO/PORT OUT
GPIO IN
GPIO/PORT OUT
GPIO INPUT
CONDITIONING
GPIO/PORT
OUTPUT LATCH
INT
OUTPUT LATCH
Figure 11. Maskable GPIO Ports P24 Through P31
segment drivers at full current. On a 3.3V supply, a
MAX6956 dissipates (3.3V - 2.4V)
672mA = 0.6W
when driving 28 of these 2.4V forward-voltage drop
LEDs at full current. This dissipation is within the ratings
of the 36-pin SSOP package with an ambient tempera-
ture up to +98°C. If a higher supply voltage is used or
the LEDs used have a lower forward-voltage drop than
2.4V, the MAX6956 absorbs a higher voltage, and the
MAX6956’s power dissipation increases.
If the application requires high drive current and high
supply voltage, consider adding a series resistor to
each LED to drop excessive drive voltage off-chip. For
example, consider the requirement that the MAX6956
must drive LEDs with a 2.0V to 2.4V specified forward-
voltage drop, from an input supply range is 5V ±5%
with a maximum LED current of 20mA. Minimum input
supply voltage is 4.75V. Maximum LED series resistor
value is (4.75V - 2.4V - 0.6V)/0.020A = 87.5. We
choose 82 ±2%. Worst-case resistor dissipation is at
maximum toleranced resistance, i.e., (0.020A)
2
(82
1.02) = 34mW. The maximum MAX6956 dissipation
per LED is at maximum input supply voltage, minimum
toleranced resistance, minimum toleranced LED for-
ward-voltage drop, i.e., 0.020 x (5.25V - 2.0V - (0.020A
82 x 0.98)) = 32.86mW. Worst-case MAX6956 dissi-
pation is 920mW driving all 28 LEDs at 20mA full cur-
rent at once, which meets the 941mW dissipation
ratings of the 36-pin SSOP package.
Low-Voltage Operation
The MAX6956 operates down to 2V supply voltage
(although the sourcing and sinking currents are not guar-
anteed), providing that the MAX6956 is powered up ini-
tially to at least 2.5V to trigger the device’s internal reset.
Serial Interface Latency
When a MAX6956 register is written through the I
2
C inter-
face, the register is updated on the rising edge of SCL
during the data byte’s acknowledge bit (Figure 5). The
delay from the rising edge of SCL to the internal register
being updated can range from 50ns to 350ns.
PC Board Layout Considerations
Ensure that all of the MAX6956 GND connections are
used. A ground plane is not necessary, but may be useful
to reduce supply impedance if the MAX6956 outputs are
to be heavily loaded. Keep the track length from the ISET
pin to the R
ISET
resistor as short as possible, and take the
GND end of the resistor either to the ground plane or
directly to the GND pins.
Power-Supply Considerations
The MAX6956 operates with power-supply voltages of
2.5V to 5.5V. Bypass the power supply to GND with a
0.047µF capacitor as close to the device as possible.
Add a 1µF capacitor if the MAX6956 is far away from
the board’s input bulk decoupling capacitor.
MAX6956
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or
28-Port LED Display Driver and I/O Expander
______________________________________________________________________________________ 21
Table 15. Transition Detection Mask Register
REGISTER DATA
FUNCTION
REGISTER
ADDRESS
(HEX)
READ/
WRITE
D7 D6 D5 D4 D3 D2 D1 D0
Read INT Status*
Mask
Register
0x06
Write Unchanged
Port
30
mask
Port
29
mask
Port
28
mask
Port
27
mask
Port
26
mask
Port
25
mask
Port
24
mask
*
INT is automatically cleared after it is read.
Table 16. Display Test Register
REGISTER DATA
MODE
ADDRESS CODE
(HEX)
D7 D6 D5 D4 D3 D2 D1 D0
Normal Operation 0x07 XXXXXXX0
Display Test Mode 0x07 XXXXXXX1
X = Don’t care bit

MAX6956ATL+T

Mfr. #:
Manufacturer:
Maxim Integrated
Description:
LED Display Drivers 2.5-5.5V 20/28Port LED Display Driver
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union