LTC3602
7
3602fb
OPERATION
Main Control Loop
The LTC3602 is a monolithic, constant-frequency, current-
mode step-down DC/DC converter. During normal opera-
tion, the internal top power switch (N-channel MOSFET) is
turned on at the beginning of each clock cycle. Current in
the inductor increases until the current comparator trips
and turns off the top power MOSFET. The peak inductor
current at which the current comparator shuts off the top
power switch is controlled by the voltage on the I
TH
pin.
The error amplifi er adjusts the voltage on the I
TH
pin by
comparing the feedback signal from a resistor divider on
the V
FB
pin with an internal 0.6V reference. When the load
current increases, it causes a reduction in the feedback
voltage relative to the reference. The error amplifi er raises
the I
TH
voltage until the average inductor current matches
the new load current. When the top power MOSFET shuts
off, the synchronous power switch (N-channel MOSFET)
turns on until either the bottom current limit is reached or
the beginning of the next clock cycle. The bottom current
limit is set at –2.5A for forced continuous mode and 0A
for Burst Mode operation.
The operating frequency is externally set by an external
resistor connected between the R
T
pin and ground. The
practical switching frequency can range from 300kHz to
3MHz.
Overvoltage and undervoltage comparators will pull the
PGOOD output low if the output voltage comes out of
regulation by ±7.5%. In an overvoltage condition, the top
power MOSFET is turned off and the bottom power MOSFET
is switched on until either the overvoltage condition clears
or the bottom MOSFETs current limit is reached.
Forced Continuous Mode
Connecting the SYNC/MODE pin to INTV
CC
will disable Burst
Mode operation and force continuous current operation.
At light loads, forced continuous mode operation is less
effi cient than Burst Mode operation, but may be desirable in
some applications where it is necessary to keep switching
harmonics out of a signal band. The output voltage ripple
is minimized in this mode.
Burst Mode Operation
Connecting the SYNC/MODE pin to a voltage in the range
of 0.42V to 1V enables Burst Mode operation. In Burst
Mode operation, the internal power MOSFETs operate
intermittently at light loads. This increases effi ciency by
minimizing switching losses. During Burst Mode opera-
tion, the minimum peak inductor current is externally set
by the voltage on the SYNC/MODE pin and the voltage
on the I
TH
pin is monitored by the burst comparator to
determine when sleep mode is enabled and disabled.
When the average inductor current is greater than the
load current, the voltage on the I
TH
pin drops. As the I
TH
voltage falls below 330mV, the burst comparator trips and
enables sleep mode. During sleep mode, the top power
MOSFET is held off and the I
TH
pin is disconnected from
the output of the error amplifi er. The majority of the internal
circuitry is also turned off to reduce the quiescent current
to 75μA while the load current is solely supplied by the
output capacitor. When the output voltage drops, the I
TH
pin is reconnected to the output of the error amplifi er and
the top power MOSFET along with all the internal circuitry
is switched back on. This process repeats at a rate that
is dependent on the load demand. Pulse-skipping opera-
tion is implemented by connecting the SYNC/MODE pin
to ground. This forces the burst clamp level to be at 0V.
As the load current decreases, the peak inductor current
will be determined by the voltage on the I
TH
pin until the
I
TH
voltage drops below 330mV. At this point, the peak
inductor current is determined by the minimum on-time
of the current comparator. If the load demand is less than
the average of the minimum on-time inductor current,
switching cycles will be skipped to keep the output volt-
age in regulation.
Frequency Synchronization
The internal oscillator of the LTC3602 can be synchronized
to an external clock connected to the SYNC/MODE pin.
The frequency of the external clock can be in the range of
300kHz to 3MHz. For this application, the oscillator timing
resistor should be chosen to correspond to a frequency
that is 25% lower than the synchronization frequency.
When synchronized, the LTC3602 will operate in pulse-
skipping mode.
LTC3602
8
3602fb
OPERATION
Dropout Operation
When the input supply voltage decreases toward the output
voltage, the duty cycle increases toward the maximum
on-time. Further reduction of the supply voltage forces the
top switch to remain on for more than one cycle until it
attempts to stay on continuously. In order to replenish the
voltage on the fl oating BOOST supply capacitor, however,
the top switch is forced off and the bottom switch is forced
on for approximately 85ns every sixteen clock cycles. This
achieves an effective duty cycle that can exceed 99%. The
output voltage will then be primarily determined by the
input voltage minus the voltage drop across the upper
internal N-channel MOSFET and the inductor.
Slope Compensation and Inductor Peak Current
Slope compensation provides stability in constant-fre-
quency architectures by preventing subharmonic oscilla-
tions at duty cycles greater than 50%. It is accomplished
internally by adding a compensating ramp to the inductor
current signal at duty cycles in excess of 30%. Normally,
the maximum inductor peak current is reduced when
slope compensation is added. In the LTC3602, however,
slope compensation recovery is implemented to reduce
the variation of the maximum inductor peak current (and
therefore the maximum available output current) over the
range of duty cycles.
Short-Circuit Protection
When the output is shorted to ground, the inductor cur-
rent decays very slowly during a single switching cycle.
To prevent current runaway from occurring, a secondary
current limit is imposed on the inductor current. If the
inductor valley current increases to more than 4.5A, the
top power MOSFET will be held off and switching cycles
will be skipped until the inductor current is reduced.
Overtemperature Protection
When using the LTC3602 in an application circuit, care
must be taken not to exceed any of the ratings speci-
ed in the Absolute Maximum Ratings section. As an
added safeguard, however, the LTC3602 does incorporate
an overtemperature shutdown feature. If the junction
temperature reaches approximately 150°C, both power
switches will be turned off and the SW node will become
high impedance. After the part has cooled to below 115°C,
it will restart.
Voltage Tracking and Soft-Start
Some microprocessors and DSP chips need two power
supplies with different voltage levels. These systems often
require voltage sequencing between the core power supply
and the I/O power supply. Without proper sequencing,
latch-up failure or excessive current draw may occur that
could result in damage to the processors I/O ports or the
I/O ports of a supporting system device such as memory,
an FPGA or a data converter. To ensure that the I/O loads
are not driven until the core voltage is properly biased,
tracking of the core supply and the I/O supply voltage is
necessary.
Voltage tracking is enabled by applying a ramp voltage to
the TRACK/SS pin. When the voltage on the TRACK pin
is below 0.6V, the feedback voltage will regulate to this
tracking voltage. When the tracking voltage exceeds 0.6V,
tracking is disabled and the feedback voltage will regulate
to the internal reference voltage.
The TRACK/SS pin is also used to implement an external
soft-start function. A 1.2μA current is sourced from this
pin so that an external capacitor may be added to create
a smooth ramp. If this ramp is slower than the internal
1ms soft-start, then the output voltage will track this ramp
during start up instead. Leave this pin fl oating to use the
internal 1ms soft-start ramp. Do not tie the TRACK/SS
pin to INTV
CC
or to PV
IN
.
LTC3602
9
3602fb
APPLICATIONS INFORMATION
The basic LTC3602 application circuit is shown on the front
page of this data sheet. External component selection is
determined by the maximum load current and begins with
the selection of the inductor value and operating frequency
followed by C
IN
and C
OUT
.
Operating Frequency
Selection of the operating frequency is a tradeoff between
effi ciency and component size. High frequency operation
allows the use of smaller inductor and capacitor values.
Operation at lower frequencies improves effi ciency by
reducing internal gate charge and switching losses but
requires larger inductance values and/or capacitance to
maintain low output ripple voltage. The operating frequency
of the LTC3602 is determined by an external resistor that is
connected between the R
T
pin and ground. The value of the
resistor sets the ramp current that is used to charge and
discharge an internal timing capacitor within the oscillator
and can be calculated by using the following equation:
R
fHz
k
OSC
=
115 10
10
11
.•
()
Although frequencies as high as 3MHz are possible, the
minimum on-time of the LTC3602 imposes a minimum
limit on the operating duty cycle. The minimum on-time
is typically 90ns. Therefore, the minimum duty cycle is
equal to 100 • 90ns • f(Hz).
Inductor Selection
For a given input and output voltage, the inductor value
and operating frequency determine the ripple current. The
ripple current ΔI
L
increases with higher V
IN
and decreases
with higher inductance.
ΔI
L
=
V
OUT
fL
•1
V
OUT
V
IN
Having a lower ripple current reduces the ESR losses
in the output capacitors and the output voltage ripple.
Highest effi ciency operation is achieved at low frequency
with small ripple current. This, however, requires a large
inductor.
A reasonable starting point for selecting the ripple current
is ΔI
L
= 0.4(I
MAX
), where I
MAX
is the maximum output
current. The largest ripple current occurs at the highest
V
IN
. To guarantee that the ripple current stays below a
specifi ed maximum, the inductor value should be chosen
according to the following equation:
L =
V
OUT
fΔI
L(MAX)
•1
V
OUT
V
IN(MAX)
The inductor value will also have an effect on Burst Mode
operation. The transition from low current operation
begins when the peak inductor current falls below a level
set by the burst clamp. Lower inductor values result in
higher ripple current which causes this to occur at lower
load currents. This causes a dip in effi ciency in the upper
range of low current operation. In Burst Mode operation,
lower inductance values will cause the burst frequency
to increase.
Inductor Core Selection
Once the value for L is known, the type of inductor must
be selected. High effi ciency converters generally cannot
afford the core loss found in low cost powdered iron cores,
forcing the use of the more expensive ferrite cores. Actual
core loss is independent of core size for a fi xed inductor
value but it is very dependent on the inductance selected.
As the inductance increases, core losses decrease. Un-
fortunately, increased inductance requires more turns of
wire and therefore copper losses will increase.
Ferrite designs have very low core losses and are pre-
ferred at high switching frequencies, so design goals can
concentrate on copper loss and preventing saturation.
Ferrite core material saturates “hard,” which means that
inductance collapses abruptly when the peak design current
is exceeded. This results in an abrupt increase in inductor
ripple current and consequent output voltage ripple. Do
not allow the core to saturate!
Different core materials and shapes will change the
size/current and price/current relationship of an inductor.
Toroid or shielded pot cores in ferrite or permalloy ma-
terials are small and do not radiate energy but generally
cost more than powdered iron core inductors with similar

LTC3602EFE#PBF

Mfr. #:
Manufacturer:
Analog Devices / Linear Technology
Description:
Switching Voltage Regulators 2.5A, 10V, Mono Sync Buck Reg
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union