MIC2186 Micrel, Inc.
M9999-042205 10 April 2005
Conditions:
V
IN
= 3V
V
O
= 9V
I
O
= 0.6A
MOSFET gate
drive @ 10V/div
Switch Node Voltage
(MOSFET Drain)
@10V/div
VOUT Ripple Voltage
@50mV/div
Inductor Current @
1A/div
PWM Mode Waveforms
TIME (1µs/div)
Figure 5 - PWM mode waveforms
The MIC2186 uses current mode control to improve output
regulation and simplify compensation of the control loop.
Current mode control senses both the output voltage (outer
loop) and the inductor current (inner loop). It uses the inductor
current and output voltage to determine the duty cycle (D) of
the buck converter. Sampling the inductor current effectively
removes the inductor from the control loop, which simplifies
compensation. A simplified current mode control diagram is
shown in Figure 6.
I_inductor
T
ON
T
PER
V
COMP
I_inductor
I_inductor
Gate Driver
I_inductor
Voltage
Divider
V
REF
V
IN
Gate Drive at OutN
Figure 6: PWM Control Loop
A block diagram of the MIC2186 PWM current mode control
loop is shown in Figure 1. The inductor current is sensed by
measuring the voltage across a resistor, Rsense. The current
sense amplifier buffers and amplifies this signal. A ramp is
added to this signal to provide slope compensation, which is
required in current mode control to prevent unstable opera-
tion at duty cycles greater than 50%.
A transconductance amplifier is used as an error amplifier,
which compares an attenuated output voltage with a refer-
ence voltage. The output of the error amplifier is compared to
the current sense waveform in the PWM block. When the
current signal rises above the error voltage, the comparator
turns off the low side drive. The error signal is brought out to
the COMP pin (pin 4) to provide access to the output of the
error amplifier. This allows the use of external components to
stabilize the voltage loop.
Current Sensing and Overcurrent Protection
The inductor current is sensed during the switch on time by
a current sense resistor located between the source of the
MOSFET and ground (Rsense in Figure 1). Exceeding the
current limit threshold will immediately terminate the gate
drive of the N-channel MOSFET, Q1. This forces the Q1 to
operate at a reduced duty cycle, which lowers the output
voltage. In a boost converter, the overcurrent limit will not
protect the power supply or load during a severe
overcurrent condition or short circuit condition. If the
output is short-circuited to ground, current will flow from the
input, through the inductor and output diode to ground. Only
the impedance of the source and components limits the
current.
The mode of operation (continuous or discontinuous), the
minimum input voltage, maximum output power and the
minimum value of the current limit threshold determine the
value of the current sense resistor. Discontinuous mode is
where all the energy in the inductor is delivered to the output
at each switching cycle. Continuous mode of operation
occurs when current always flows in the inductor, during both
the low-side MOSFET on and off times. The equations below
will help to determine the current sense resistor value for
each operating mode.
The critical value of output current in a boost converter is
calculated below. The operating mode is discontinuous if the
output current is below this value and is continuous if above
this value.
I
VVV
2fsLV
CRIT
IN
2
O
IN
O
2
=
×
()
×
×××
η
where:
η is the efficiency of the boost converter
Vin is the minimum input voltage
L is the value of the boost inductor
Fs is the switching frequency
Vo is the output voltage
Maximum Peak Current in Discontinuous Mode:
The peak inductor current is:
I
2I V V
Lfs
IND(pk)
OO
IN
=
×× ×
()
×
η
where:
Io is the maximum output current
Vo is the output voltage
Vin is the minimum input voltage
L is the value of the boost inductor
fs is the switching frequency
η is the efficiency of the boost converter
The maximum value of current sense resistor is:
April 2005 11 M9999-042205
MIC2186 Micrel, Inc.
R
V
I
SENSE
SENSE
IND(pk)
=
where:
Vsense is the minimum current sense threshold
of the CSH pin
Maximum Peak Current in Continuous Mode:
The peak inductor current is equal to the average inductor
current plus one half of the peak to peak inductor current.
The peak inductor current is:
II
1
2
I
I
VI
V
VVV
2V fsL
IND(pk) IND(ave) IND(pp)
IND(pk)
OO
IN
L
O
IN
O
=+×
=
×
×
+
× ×
()
×××η
η
where:
Io is the maximum output current
Vo is the output voltage
Vin is the minimum input voltage
L is the value of the boost inductor
fs is the switching frequency
η is the efficiency of the boost converter
VL is the voltage across the inductor
VL may be approximated as Vin for higher input voltage.
However, the voltage drop across the inductor winding resis-
tance and low side MOSFET on-resistance must be ac-
counted for at the lower input voltages that the MIC2186
operates at.
VV
VI
V
RR
LIN
OO
IN
WINDING DSON
=
×
×
×+
()
η
where:
Rwinding is the winding resistance of the inductor
Rdson is the on resistance of the low side switching
MOSFET
The maximum value of current sense resistor is:
R
V
I
SENSE
SENSE
IND(pk)
=
where:
V
SENSE
is the minimum current sense threshold
of the CSH pin
The current sense pin, CSH, is noise sensitive due to the low
signal level. The current sense voltage measurement is
referenced to the signal ground pin of the MIC2186. The
current sense resistor ground should be located close to the
IC ground. Make sure there are no high currents flowing in this
trace. The PCB trace between the high side of the current
sense resistor and the CHS pin should also be short and
routed close to the ground connection. The input to the
internal current sense amplifier has a 30nS dead time at the
beginning of each switching cycle. This dead time prevents
leading edge current spikes from prematurely terminating the
switching cycle. A small RC filter between the current sense
pin and current sense resistor may help to attenuate larger
switching spikes or high frequency switching noise. Adding
the filter slows down the current sense signal, which has the
effect of slightly raising the overcurrent limit threshold.
MOSFET Gate Drive
The MIC2186 converter drives a low side N-channel MOSFET.
The driver for the OutN pin has a 1.6 typical source and sink
impedance. The VinP pin is the supply pin for the gate drive
circuit. It typically connected to the output. The maximum
supply voltage to the VinP pin is 14V. If the output voltage is
greater than 14V or if it is desired to drive the MOSFET with
a voltage less than Vout, the VinP pin can be connected to the
input or to an separate supply voltage.
MOSFET Selection
In a boost converter, the Vds of the MOSFET is approxi-
mately equal to the output voltage. The maximum Vds rating
of the MOSFET must be high enough to allow for ringing and
spikes in addition to the output voltage.
The VinP pin supplies the N-channel gate drive voltage. The
Vgs threshold voltage of the N-channel MOSFET must be low
enough to operate at the minimum VinP voltage to guarantee
the boost converter will start up.
The maximum amout of MOSFET gate charge that can be
driven is limited by the power dissipation in the MIC2186. The
power dissipated by the gate drive circuitry is calculated
below:
P_gate_drive=Q_gate * VinP * fs
where:
Q_gate is the total gate charge of the external
MOSFET
The graph in Figure 7 shows the total gate charge which can
be driven by the MIC2186 over the input voltage range, for
different values of switching frequency. Higher gate charge
will slow down the turn-on and turn-off times of the MOSFET,
which increases switching losses.
Power Dissipation
vs. Fre
q
uenc
y
200kHz
100kHz
400kHz
600kHz
500kHz
Figure 7 - MIC2186 freq vs pdiss
External Schottky Diode
In a boost converter topology, the boost diode, D1 must be
rated to handle the peak and average current. The average
current through the diode is equal to the average output
current of the boost converter. The peak current is calculated
in the current limit section of this specification.
MIC2186 Micrel, Inc.
M9999-042205 12 April 2005
The reverse voltage requirement of the diode is:
For the MIC2186, Schottky diodes are recommended when
they can be used. They have a lower forward voltage drop
than ultra-fast rectifier diodes, which lowers power dissipa-
tion and improves efficiency. They also do not have a recov-
ery time mechanism, which results in less ringing and noise
when the diode turns off. If the output voltage of the circuit
prevents the use of a Schottky diode, then only ultra-fast
recovery diodes should be used. Slower diodes will dissipate
more power in both the MOSFET and the diode. The will also
cause excessive ringing and noise when the diode turns off.
Reference, Enable and UVLO Circuits
The output drivers are enabled when the following conditions
are satisfied:
The Vdd voltage (pin 10) is greater than its
undervoltage threshold.
The voltage on the enable pin is greater than the
enable UVLO threshold.
The internal bias circuitry generates a 1.245V bandgap
reference for the voltage error amplifier and a 3V Vdd voltage
for the internal supply bus. The reference voltage in the
MIC2186 is buffered and brought out to pin 8. The Vref pin
must be bypassed to GND (pin 4) with a 0.1uf capacitor. The
Vdd pin must be decoupled to ground with a 1uf ceramic
capacitor.
The enable pin (pin 7) has two threshold levels, allowing the
MIC2186 to shut down in a micro-current mode, or turn off
output switching in standby mode. Below 0.9V, the device is
forced into a micro-power shutdown. If the enable pin is
between 0.9V and 1.5V the output gate drive is disabled but
the internal circuitry is powered on and the soft start pin
voltage is forced low. There is typically 135mV of hysteresis
below the 1.5V threshold to insure the part does not oscillate
on and off due to ripple voltage on the input. Raising the
enable voltage above the UVLO threshold of 1.5V enables
the output drivers and allows the soft start capacitor to
charge. The enable pin may be pulled up to VinA.
Oscillator & Sync
The internal oscillator is self-contained and requires no
external components. The HiDC and f/2 pins allow the user
to select from three different switching frequencies and two
maximum duty cycles. The chart in Table 1 shows the four
combinations that can be programmed along with the typical
minimum and maximum duty cycles.
nip2/F
leveL
CDiH
leveL
gnihctiwS
ycneuqerF
mumixaM
elcyCytuD
lacipyT
muminiM
elcyCytuD
T
FFO
ni
edoMpikS
01 zHk004%58%7sµ1
11 zHk002%58%6sµ2
00 zHk002%05%4sµ1
10 zHk001%05%3sµ2
Table 1
Minimum duty cycle becomes important in a boost converter
as the input voltage approaches the output voltage. At lower
duty cycles, the input voltage can be closer to the output
voltage without the output rising out of regulation.
A frequency foldback mode is enabled if the voltage on the
feedback pin (pin 6) is less than 0.3V. In frequency foldback
the oscillator frequency is reduced by approximately a factor
of 4. For the 400kHz setting, the oscillator runs at 100khz in
frequency foldback. For a 200kHz setting the oscillator runs
at approximately 50kHz and for a 100kHz setting, the oscil-
lator runs at approximately 25kHz.
The SYNC input (pin 11) allows the MIC2186 to synchronize
with an external CMOS or TTL clock signal. Depending on the
setting of the HiDC pin,the output frequency is either equal to
or 1/2 of the sync input frequency. If the HiDC level is low, the
output switching frequency is half the sync frequency. If the
HiDC level is high, the output switching frequency is equal to
the sync frequency.
The rising edge of the sync signal generates a reset signal in
the oscillator, which turns off the high-side gate drive output.
The low-side drive is turned on, restarting the switching cycle.
The sync signal is inhibited when the controller operates in
skip mode or frequency foldback. The sync signal frequency
must be greater than the maximum specified free running
frequency of the MIC2186. If the synchronizing frequency is
lower, double pulsing of the gate drive outputs will occur.
When not used, the sync pin must be connected to ground.
Table 2 shows the minimum recommended sync frequencies
for the different combinations of f/2 and HiDC inputs.
Figure 8a shows the timing between the external sync signal
(trace 2) and the low-side drive (trace 1) for a high level on the
HiDC pin. Figure 8b shows the timing between the external
sync signal (trace 2) and the low-side drive (trace 1) for a low
level on the HiDC pin. The sync frequency is twice the output
switching frequency.
nip2/F
leveL
CDiH
leveL
gnitallicsOfleS
ycneuqerF
muminiM
dednemmoceR
ycneuqerFcnyS
ycneuqerFtupnIcnyS
f
S
ycneuqerfgnihctiwstuptuo=
f
CNYS
ycneuqerftupnicnys=
01 zHk004zHk084f
S
f=
CNYS
11 zHk002zHk052f
S
f=
CNYS
00 zHk002zHk084f
S
=
1
/
2
f
CNYS
10 zHk001zHk052f
S
=
1
/
2
f
CNYS
Table 2

MIC2186YQS-TR

Mfr. #:
Manufacturer:
Microchip Technology / Micrel
Description:
Switching Controllers Low Voltage Asynchronous Boost PWM Control
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union