CAV24M01WE-GT3

CAV24M01
http://onsemi.com
4
Power-On Reset (POR)
The CAV24M01 incorporates PowerOn Reset (POR)
circuitry which protects the internal logic against powering
up in the wrong state.
The device will power up into Standby mode after V
CC
exceeds the POR trigger level and will power down into
Reset mode when V
CC
drops below the POR trigger level.
This bidirectional POR behavior protects the device
against brownout failure, following a temporary loss of
power.
Pin Description
SCL: The Serial Clock input pin accepts the Serial Clock
signal generated by the Master.
SDA: The Serial Data I/O pin receives input data and
transmits data stored in EEPROM. In transmit mode, this pin
is open drain. Data is acquired on the positive edge, and is
delivered on the negative edge of SCL.
A
1
and A
2
: The Address pins accept the device address.
These pins have onchip pulldown resistors.
WP: The Write Protect input pin inhibits all write
operations, when pulled HIGH. This pin has an onchip
pulldown resistor.
Functional Description
The CAV24M01 supports the InterIntegrated Circuit
(I
2
C) Bus data transmission protocol, which defines a device
that sends data to the bus as a transmitter and a device
receiving data as a receiver. Data flow is controlled by a
Master device, which generates the serial clock and all
START and STOP conditions. The CAV24M01 acts as a
Slave device. Master and Slave alternate as either
transmitter or receiver. Up to 4 devices may be connected to
the bus as determined by the device address inputs A
1
and
A
2
.
I
2
C Bus Protocol
The I
2
C bus consists of two ‘wires’, SCL and SDA. The
two wires are connected to the V
CC
supply via pullup
resistors. Master and Slave devices connect to the 2wire
bus via their respective SCL and SDA pins. The transmitting
device pulls down the SDA line to ‘transmit’ a ‘0’ and
releases it to ‘transmit’ a ‘1’.
Data transfer may be initiated only when the bus is not
busy (see A.C. Characteristics).
During data transfer, the SDA line must remain stable
while the SCL line is HIGH. An SDA transition while SCL
is HIGH will be interpreted as a START or STOP condition
(Figure 2).
START
The START condition precedes all commands. It consists
of a HIGH to LOW transition on SDA while SCL is HIGH.
The START acts as a ‘wakeup’ call to all receivers. Absent
a START, a Slave will not respond to commands.
STOP
The STOP condition completes all commands. It consists
of a LOW to HIGH transition on SDA while SCL is HIGH.
The STOP starts the internal Write cycle (when following a
Write command) or sends the Slave into standby mode
(when following a Read command).
Device Addressing
The Master initiates data transfer by creating a START
condition on the bus. The Master then broadcasts an 8bit
serial Slave address. The first 4 bits of the Slave address are
set to 1010, for normal Read/Write operations (Figure 3).
The next 2 bits, A2, A1, select one of 4 possible memory
devices connected on a single I
2
C bus. The A2 and A1 bits
must match the state of the external address pins. The
seventh bit, a16 is the most significant internal address bit.
The last bit, R/W
, specifies whether a Read (1) or Write (0)
operation is to be performed. To select an internal memory
location (data byte) a 17bit address word is required:
a16 bit from the Slave address byte followed by two address
bytes.
Acknowledge
After processing the Slave address, the Slave responds
with an acknowledge (ACK) by pulling down the SDA line
during the 9th clock cycle (Figure 4). The Slave will also
acknowledge the byte address and every data byte presented
in Write mode. In Read mode the Slave shifts out a data byte,
and then releases the SDA line during the 9th clock cycle. If
the Master acknowledges the data, then the Slave continues
transmitting. The Master terminates the session by not
acknowledging the last data byte (NoACK) and by sending
a STOP to the Slave. Bus timing is illustrated in Figure 5.
CAV24M01
http://onsemi.com
5
START
CONDITION
STOP
CONDITION
SDA
SCL
Figure 2. Start/Stop Timing
Figure 3. Slave Address Bits
1010
DEVICE ADDRESS
A
2
A
1
a
16
R/W
Figure 4. Acknowledge Timing
189
START
SCL FROM
MASTER
BUS RELEASE DELAY (TRANSMITTER)
BUS RELEASE DELAY (RECEIVER)
DATA OUTPUT
FROM TRANSMITTER
DATA OUTPUT
FROM RECEIVER
ACK SETUP ( t
SU:DAT
)
ACK DELAY ( t
AA
)
Figure 5. Bus Timing
SCL
SDA IN
SDA OUT
t
BUF
t
SU:STO
t
SU:DAT
t
R
t
AA
t
DH
t
LOW
t
HIGH
t
LOW
t
SU:STA
t
HD:STA
t
HD:DAT
t
F
CAV24M01
http://onsemi.com
6
WRITE OPERATIONS
Byte Write
In Byte Write mode the Master sends a START, followed
by Slave address, two byte address and data to be written
(Figure 6). The Slave acknowledges all 4 bytes, and the
Master then follows up with a STOP, which in turn starts the
internal Write operation (Figure 7). During internal Write,
the Slave will not acknowledge any Read or Write request
from the Master.
Page Write
The CAV24M01 contains 131,072 bytes of data, arranged
in 512 pages of 256 bytes each. The most significant 9 bits
of the address word (a16 from the Slave Address byte and
most significant Address byte) identify the page and the last
8 bits identify the byte within the page. The 17bit address
word (a16 from the Slave Address byte followed by two
address bytes) points to the first byte to be written. Up to 256
bytes can be written in one Write cycle (Figure 8).
The internal byte address counter is automatically
incremented after each data byte is loaded. If the Master
transmits more than 256 data bytes, then earlier bytes will be
overwritten by later bytes in a ‘wraparound’ fashion
(within the selected page). The internal Write cycle starts
immediately following the STOP.
Acknowledge Polling
Acknowledge polling can be used to determine if the
CAV24M01 is busy writing or is ready to accept commands.
Polling is implemented by interrogating the device with a
‘Selective Read’ command (see READ OPERATIONS).
The CAV24M01 will not acknowledge the Slave address,
as long as internal Write is in progress.
Hardware Write Protection
With the WP pin held HIGH, the entire memory is
protected against Write operations. If the WP pin is left
floating or is grounded, it has no impact on the operation of
the CAV24M01. The state of the WP pin is strobed on the last
falling edge of SCL immediately preceding the first data
byte (Figure 9). If the WP pin is HIGH during the strobe
interval, the CAV24M01 will not acknowledge the data byte
and the Write request will be rejected.
Delivery State
The CAV24M01 is shipped erased, i.e., all bytes are FFh.

CAV24M01WE-GT3

Mfr. #:
Manufacturer:
ON Semiconductor
Description:
EEPROM 1 Mb I2C CMOS Serial EEPROM
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet