NCP699SN34T1G

NCP699
http://onsemi.com
7
APPLICATIONS INFORMATION
A typical application circuit for the NCP699 series is
shown in Figure 1, front page.
Input Decoupling (C
in
)
A 1.0 F capacitor either ceramic or tantalum is
recommended and should be connected close to the NCP699
package. Higher values and lower ESR will improve the
overall line transient response.
TDK capacitor: C2012X5R1C105K, or C1608X5R1A105K
Output Decoupling (C
out
)
The NCP699 is a stable regulator and does not require any
specific Equivalent Series Resistance (ESR) or a minimum
output current. Capacitors exhibiting ESRs ranging from a
few m up to 5.0 can thus safely be used. The minimum
decoupling value is 1.0 F and can be augmented to fulfill
stringent load transient requirements. The regulator accepts
ceramic chip capacitors as well as tantalum capacitors.
Larger values improve noise rejection and load regulation
transient response.
TDK capacitor: C2012X5R1C105K, C1608X5R1A105K,
or C3216X7R1C105K
Enable Operation
The enable pin will turn on the regulator when pulled high
and turn off the regulator when pulled low. These limits of
threshold are covered in the electrical specification section
of this data sheet. If the enable is not used then the pin should
be connected to V
in
.
Hints
Please be sure the Vin and Gnd lines are sufficiently wide.
When the impedance of these lines is high, there is a chance
to pick up noise or cause the regulator to malfunction.
Set external components, especially the output capacitor,
as close as possible to the circuit, and make leads as short as
possible.
Thermal
As power across the NCP699 increases, it might become
necessary to provide some thermal relief. The maximum
power dissipation supported by the device is dependent
upon board design and layout. Mounting pad configuration
on the PCB, the board material and also the ambient
temperature effect the rate of temperature rise for the part.
This is stating that when the NCP699 has good thermal
conductivity through the PCB, the junction temperature will
be relatively low with high power dissipation applications.
The maximum dissipation the package can handle is
given by:
PD +
T
J(max)
*T
A
R
JA
If junction temperature is not allowed above the
maximum 125°C, then the NCP699 can dissipate up to
400 mW @ 25°C.
The power dissipated by the NCP699 can be calculated
from the following equation:
P
tot
+
ƪ
V
in
*I
gnd
(@I
out
)
ƫ
)
[
V
in
* V
out
]
*I
out
or
V
inMAX
+
P
tot
)
V
out
*
I
out
I
gnd
(
@I
out
)
) I
out
If an 150 mA output current is needed then the ground
current from the data sheet is 40 A. For an NCP699 (3.0 V),
the maximum input voltage will then be 5.65 V.
ORDERING INFORMATION
Device
Nominal
Output Voltage*
Marking Package Shipping
NCP699SN13T1G 1.3 LJY
TSOP5
(PbFree)
3000 Units/
7 Tape & Reel
NCP699SN14T1G 1.4 AA4
NCP699SN15T1G 1.5 LJP
NCP699SN18T1G 1.8 LJS
NCP699SN25T1G 2.5 LJT
NCP699SN28T1G 2.8 LJU
NCP699SN29T1G 2.9 ACP
NCP699SN30T1G 3.0 LJV
NCP699SN31T1G 3.1 AAE
NCP699SN33T1G 3.3 LJW
NCP699SN34T1G 3.4 ACF
NCP699SN45T1G 4.5 ACQ
NCP699SN50T1G 5.0 LJX
*Additional voltages in 100 mV steps are available upon request by contacting your ON Semiconductor representative.
For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specification Brochure, BRD8011/D.
NCP699
http://onsemi.com
8
PACKAGE DIMENSIONS
TSOP5
CASE 48302
ISSUE H
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES
LEAD FINISH THICKNESS. MINIMUM LEAD
THICKNESS IS THE MINIMUM THICKNESS
OF BASE MATERIAL.
4. DIMENSIONS A AND B DO NOT INCLUDE
MOLD FLASH, PROTRUSIONS, OR GATE
BURRS.
5. OPTIONAL CONSTRUCTION: AN
ADDITIONAL TRIMMED LEAD IS ALLOWED
IN THIS LOCATION. TRIMMED LEAD NOT TO
EXTEND MORE THAN 0.2 FROM BODY.
DIM MIN MAX
MILLIMETERS
A 3.00 BSC
B 1.50 BSC
C 0.90 1.10
D 0.25 0.50
G 0.95 BSC
H 0.01 0.10
J 0.10 0.26
K 0.20 0.60
L 1.25 1.55
M 0 10
S 2.50 3.00
123
54
S
A
G
L
B
D
H
C
J
__
0.7
0.028
1.0
0.039
ǒ
mm
inches
Ǔ
SCALE 10:1
0.95
0.037
2.4
0.094
1.9
0.074
*For additional information on our PbFree strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
SOLDERING FOOTPRINT*
0.20
5X
C AB
T0.10
2X
2X
T0.20
NOTE 5
T
SEATING
PLANE
0.05
K
M
DETAIL Z
DETAIL Z
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
N. American Technical Support: 8002829855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81357733850
NCP699/D
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 3036752175 or 8003443860 Toll Free USA/Canada
Fax: 3036752176 or 8003443867 Toll Free USA/Canada
Email: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative

NCP699SN34T1G

Mfr. #:
Manufacturer:
ON Semiconductor
Description:
LDO Voltage Regulators 150mA 3.4V CMOS LDO
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union