MMBT5087LT1G

MMBT5087L
www.onsemi.com
4
TYPICAL STATIC CHARACTERISTICS
Figure 6. Collector Saturation Region
I
C
, COLLECTOR CURRENT (mA)
1.4
Figure 7. Collector Characteristics
I
C
, COLLECTOR CURRENT (mA)
V, VOLTAGE (VOLTS)
1.0 2.0 5.0 10 20
50
1.6
100
T
J
= 25°C
V
BE(sat)
@ I
C
/I
B
= 10
V
CE(sat)
@ I
C
/I
B
= 10
V
BE(on)
@ V
CE
= 1.0 V
*q
VC
for V
CE(sat)
q
VB
for V
BE
0.1 0.2 0.5
Figure 8. “On” Voltages
I
B
, BASE CURRENT (mA)
0.4
0.6
0.8
1.0
0.2
0
V
CE
, COLLECTOR-EMITTER VOLTAGE (VOLTS)
0.002
T
A
= 25°C
I
C
= 1.0 mA 10 mA 100 mA
Figure 9. Temperature Coefficients
50 mA
V
CE
, COLLECTOR-EMITTER VOLTAGE (VOLTS)
40
60
80
100
20
0
0
I
C
, COLLECTOR CURRENT (mA)
T
A
= 25°C
PULSE WIDTH = 300 ms
DUTY CYCLE 2.0%
I
B
= 400 mA
350 mA
300 mA
250 mA
200 mA
*APPLIES for I
C
/I
B
h
FE
/2
25°C to 125°C
-55°C to 25°C
25°C to 125°C
-55°C to 25°C
0.005 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 5.0 10 15 20 25 30 35 40
1.2
1.0
0.8
0.6
0.4
0.2
0
2.4
0.8
0
1.6
0.8
1.0 2.0 5.0 10 20
50
100
0.1 0.2 0.5
V
, TEMPERATURE COEFFICIENTS (mV/ C)°θ
150 mA
100 mA
50 mA
MMBT5087L
www.onsemi.com
5
TYPICAL DYNAMIC CHARACTERISTICS
C, CAPACITANCE (pF)
Figure 10. Turn−On Time
I
C
, COLLECTOR CURRENT (mA)
500
Figure 11. Turn−Off Time
I
C
, COLLECTOR CURRENT (mA)
2.0 5.0 10
20 30 50
1000
Figure 12. Current−Gain — Bandwidth Product
I
C
, COLLECTOR CURRENT (mA)
Figure 13. Capacitance
V
R
, REVERSE VOLTAGE (VOLTS)
3.01.0
500
0.5
10
t, TIME (ns)
t, TIME (ns)
f, CURRENT-GAIN — BANDWIDTH PRODUCT (MHz)
T
5.0
7.0
10
20
30
50
70
100
300
7.0
70 100
V
CC
= 3.0 V
I
C
/I
B
= 10
T
J
= 25°C
t
d
@ V
BE(off)
= 0.5 V
t
r
10
20
30
50
70
100
200
300
500
700
- 2.0
-1.0
V
CC
= - 3.0 V
I
C
/I
B
= 10
I
B1
= I
B2
T
J
= 25°C
t
s
t
f
50
70
100
200
300
0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 50
T
J
= 25°C
V
CE
= 20 V
5.0 V
1.0
2.0
3.0
5.0
7.0
0.1 0.2 0.5 1.0 2.0 5.0 10 20 500.05
C
ib
C
ob
200
- 3.0
- 5.0 - 7.0
- 20
-10
- 30
- 50 - 70
-100
T
J
= 25°C
MMBT5087L
www.onsemi.com
6
Figure 14. Thermal Response
t, TIME (ms)
1.0
0.01
r(t) TRANSIENT THERMAL RESISTANCE
(NORMALIZED)
0.01
0.02
0.03
0.05
0.07
0.1
0.2
0.3
0.5
0.7
0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 200 500 1.0k 2.0k 5.0k 10k 20k
50k
100k
D = 0.5
0.2
0.1
0.05
0.02
0.01
SINGLE PULSE
DUTY CYCLE, D = t
1
/t
2
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t
1
(SEE AN569/D)
Z
q
JA(t)
= r(t) R
q
JA
T
J(pk)
− T
A
= P
(pk)
Z
q
JA(t)
t
1
t
2
P
(pk)
FIGURE 16
T
J
, JUNCTION TEMPERATURE (°C)
10
4
-4
0
I
C
, COLLECTOR CURRENT (nA)
Figure 15. Typical Collector Leakage Current
DESIGN NOTE: USE OF THERMAL RESPONSE DATA
A train of periodical power pulses can be represented by
the model as shown in Figure 16. Using the model and the
device thermal response the normalized effective transient
thermal resistance of Figure 14 was calculated for various
duty cycles.
To find Z
q
JA(t)
, multiply the value obtained from Figure
14 by the steady state value R
q
JA
.
Example:
Dissipating 2.0 watts peak under the following conditions:
t
1
= 1.0 ms, t
2
= 5.0 ms (D = 0.2)
Using Figure 14 at a pulse width of 1.0 ms and D = 0.2, the
reading of r(t) is 0.22.
The peak rise in junction temperature is therefore
DT = r(t) x P
(pk)
x R
q
JA
= 0.22 x 2.0 x 200 = 88°C.
For more information, see ON Semiconductor Application
Note AN569/D, available from the Literature Distribution
Center or on our website at www.onsemi.com.
10
-2
10
-1
10
0
10
1
10
2
10
3
-2
0
0 + 20 + 40 + 60 + 80 + 100 + 120 + 140 + 160
V
CC
= 30 V
I
CEO
I
CBO
AND
I
CEX
@ V
BE(off)
= 3.0 V

MMBT5087LT1G

Mfr. #:
Manufacturer:
ON Semiconductor
Description:
Bipolar Transistors - BJT 50mA 50V PNP
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union