10
FN9073.9
October 21, 2015
Dedicate one solid layer, usually a middle layer of the PC
board, for a ground plane and make all critical component
ground connections with vias to this layer. Dedicate another
solid layer as a power plane and break this plane into
smaller islands of common voltage levels. Keep the metal
runs from the PHASE terminals to the output inductor short.
The power plane should support the input power and output
power nodes. Use copper-filled polygons on the top and
bottom circuit layers for the phase nodes. Use the remaining
printed circuit layers for small signal wiring. The wiring traces
from the GATE pins to the MOSFET gates should be kept
short and wide enough to easily handle the 1A of drive
current. The switching components should be placed close
to the ISL6406 first. Minimize the length of the connections
between the input capacitors, C
IN
, and the power switches
by placing them nearby. Position both the ceramic and bulk
input capacitors as close to the upper MOSFET drain and
islands as possible. Position the output inductor and output
capacitors between the upper and lower MOSFETs and the
load.
The critical small signal components include any bypass
capacitors, feedback components, and compensation
components. Position the bypass capacitor, C
BP
, close to
the VCC pin with a via directly to the ground plane. Place
the PWM converter compensation components close to the
FB and COMP pins. The feedback resistors for both
regulators should also be located as close as possible to
the relevant FB pin with vias tied straight to the ground
plane as required.
Feedback Compensation
Figure 7 highlights the voltage-mode control loop for a
synchronous-rectified buck converter. The output voltage
(V
OUT
) is regulated to the Reference voltage level. The error
amplifier (Error Amp) output (V
E/A
) is compared with the
oscillator (OSC) triangular wave to provide a pulse-width
modulated (PWM) wave with a peak amplitude of V
IN
at the
PHASE node. The PWM wave is smoothed by the output
filter (L and C
O
).The modulator transfer function is the
small-signal transfer function of V
OUT
/V
E/A
. This function is
dominated by a DC Gain and the output filter (L
O
and C
O
),
with a double pole break frequency at F
LC
and a zero at
F
ESR
. The DC Gain of the modulator is simply the input
voltage (V
IN
) divided by the peak-to-peak oscillator voltage,
V
OSC
.
Modulator Break Frequency Equations
The compensation network consists of the error amplifier
(internal to the ISL6406) and the impedance networks Z
IN
and Z
FB
.The goal of the compensation network is to provide
a closed-loop transfer function with the highest 0dB crossing
frequency (f 0dB ) and adequate phase margin. Phase
margin is the difference between the closed loop phase at
f 0dB and 180°.
Equations 4 and 5 relate the compensation network’s poles,
zeros and gain to the components (R
1
, R
2
, R
3
, C
1
, C
2
and
C
3
) in Figure 7. Use these guidelines for locating the poles
and zeros of the compensation network:
1. Pick gain (R
2
/R
1
) for desired converter bandwidth.
2. Place first zero below filter’s double pole (~75% F
LC
).
3. Place second zero at filter’s double pole.
4. Place first pole at the ESR zero.
5. Place second pole at half the switching frequency.
6. Check gain against error amplifier’s open-loop gain.
7. Estimate phase margin—repeat if necessary.
FIGURE 7. VOLTAGE-MODE BUCK CONVERTER
COMPENSATION DESIGN
V
OUT
REFERENCE
L
O
C
O
ESR
V
IN
V
OSC
ERROR
AMP
PWM
DRIVER
(PARASITIC)
Z
FB
+
-
REFERENCE
R
1
R
3
R
2
C
3
C
1
C
2
COMP
V
OUT
FB
Z
FB
ISL6406
Z
IN
COMPARATOR
DRIVER
DETAILED COMPENSATION COMPONENTS
PHASE
V
E/A
+
-
+
-
Z
IN
OSC
f
LC
1
2 L
O
C
O
----------------------------=
(EQ. 4)
f
ESR
1
2 ESRC
O

---------------------------------------=
(EQ. 5)
ISL6406
11
FN9073.9
October 21, 2015
During overcurrent hiccup mode the COMP pin will rail HIGH
to about 5V. When the soft-start sequence is initiated
out-of-hiccup mode, the COMP pin will have to discharge
from 5V to about 1.2V, the beginning of the PWM ramp in
order to start up properly. Use of a small COMP to FB Rs
and Cs as possible is recommended. The recommended
value for C
2
in Figure 7 is 4700pF or less.
Compensation Break Frequency
Equations
Figure 8 shows an asymptotic plot of the DC/DC converter’s
gain vs frequency. The actual Modulator Gain has a high
gain peak due to the high Q factor of the output filter and is
not shown in Figure 8. Using the above guidelines should
give a Compensation Gain similar to the curve plotted. The
open loop error amplifier gain bounds the compensation
gain. Check the compensation gain at F
P2
with the
capabilities of the error amplifier. The Closed Loop Gain is
constructed on the graph of Figure 8 by adding the
Modulator Gain (in dB) to the Compensation Gain (in dB).
This is equivalent to multiplying the modulator transfer
function to the compensation transfer function and plotting
the gain. The compensation gain uses external impedance
networks Z
FB
and Z
IN
to provide a stable, high bandwidth
(BW) overall loop. A stable control loop has a gain crossing
with -20dB/decade slope and a phase margin greater than
45°. Include worst-case component variations when
determining phase margin.
Component Selection Guidelines
Charge Pump Capacitor Selection
A capacitor across pins CT1 and CT2 is required to create
the proper bias voltage for the ISL6406 when operating the
IC from 3.3V. Selecting the proper capacitance value is
important so that the bias current draw and the current
required by the MOSFET gates do not overburden the
capacitor. A conservative approach is presented in
Equation 6.
Output Capacitor Selection
An output capacitor is required to filter the output and supply
the load transient current. The filtering requirements are a
function of the switching frequency and the ripple current.
The load transient requirements are a function of the slew
rate (di/dt) and the magnitude of the transient load current.
These requirements are generally met with a mix of
capacitors and careful layout.
Modern digital ICs can produce high transient load slew
rates. High-frequency capacitors initially supply the transient
and slow the current load rate seen by the bulk capacitors.
The bulk filter capacitor values are generally determined by
the ESR (Effective Series Resistance) and voltage rating
requirements rather than actual capacitance requirements.
High-frequency decoupling capacitors should be placed as
close to the power pins of the load as physically possible. Be
careful not to add inductance in the circuit board wiring that
could cancel the usefulness of these low inductance
components. Consult with the manufacturer of the load on
specific decoupling requirements. Use only specialized
low-ESR capacitors intended for switching-regulator
applications for the bulk capacitors. The bulk capacitor’s
ESR will determine the output ripple voltage and the initial
voltage drop after a high slew-rate transient. An aluminum
electrolytic capacitor’s ESR value is related to the case size
with lower ESR available in larger case sizes. However, the
Equivalent Series Inductance (ESL) of these capacitors
increases with case size and can reduce the usefulness of
the capacitor to high slew-rate transient loading.
Unfortunately, ESL is not a specified parameter. Work with
your capacitor supplier and measure the capacitor’s
impedance with frequency to select a suitable component. In
most cases, multiple electrolytic capacitors of small case
size perform better than a single large case capacitor.
Output Inductor Selection
The output inductor is selected to meet the output voltage
ripple requirements and minimize the converter’s response
time to the load transient. The inductor value determines the
converter’s ripple current and the ripple voltage is a function
of the ripple current. The ripple voltage and current are
approximated by Equations 7 and 8:
FIGURE 8. ASYMPTOTIC BODE PLOT OF CONVERTER GAIN
100
80
60
40
20
0
-20
-40
-60
F
P1
F
Z2
10M1M100k10k1k10010
OPEN LOOP
ERROR AMP GAIN
F
Z1
F
P2
F
LC
F
ESR
COMPENSATION
GAIN (dB)
FREQUENCY (Hz)
GAIN
MODULATOR
GAIN
LOOP GAIN
20
V
IN
V
OSC
------------------



log
20
R2
R1
--------


log
C
PUMP
I
BIAS
I
GATE
+
V
CC
f
S

-------------------------------------- 1 . 5=
(EQ. 6)
I =
V
IN
- V
OUT
f
s
x L
V
OUT
V
IN
x
(EQ. 7)
V
OUT
= I x ESR
(EQ. 8)
ISL6406
12
FN9073.9
October 21, 2015
Increasing the value of inductance reduces the ripple current
and voltage. However, the large inductance values reduce
the converter’s response time to a load transient.
One of the parameters limiting the converter’s response to
a load transient is the time required to change the inductor
current. Given a sufficiently fast control loop design, the
ISL6406 will provide either 0% or 100% duty cycle in
response to a load transient. The response time is the time
required to slew the inductor current from an initial current
value to the transient current level. During this interval, the
difference between the inductor current and the transient
current level must be supplied by the output capacitor.
Minimizing the response time can minimize the output
capacitance required.
The response time to a transient is different for the
application of load and the removal of load. Equations 9 and
10 give the approximate response time interval for
application and removal of a transient load:
where: I
TRAN
is the transient load current step, t
RISE
is the
response time to the application of load, and t
FALL
is the
response time to the removal of load. The worst case
response time can be either at the application or removal of
load. Be sure to check both of these equations at the
minimum and maximum output levels for the worst case
response time.
Input Capacitor Selection
Use a mix of input bypass capacitors to control the voltage
overshoot across the MOSFETs. Use small ceramic
capacitors for high frequency decoupling and bulk capacitors
to supply the current needed each time Q
1
turns on. Place the
small ceramic capacitors physically close to the MOSFETs
and between the drain of Q
1
and the source of Q
2
.
The important parameters for the bulk input capacitor are the
voltage rating and the RMS current rating. For reliable
operation, select the bulk capacitor with voltage and current
ratings above the maximum input voltage and largest RMS
current required by the circuit. The capacitor voltage rating
should be at least 1.25x greater than the maximum input
voltage and a voltage rating of 1.5x is a conservative
guideline. The RMS current rating requirement for the input
capacitor of a buck regulator is approximately 1/2 the DC
load current.
The maximum RMS current required by the regulator may be
closely approximated through Equation 11:
For a through-hole design, several electrolytic capacitors may
be needed. For surface mount designs, solid tantalum
capacitors can be used, but caution must be exercised with
regard to the capacitor surge current rating. These capacitors
must be capable of handling the surge-current at power-up.
Some capacitor series available from reputable manufacturers
are surge current tested.
MOSFET Selection/Considerations
The ISL6406 requires two N-Channel power MOSFETs.
These should be selected based upon r
DS(ON)
, gate supply
requirements, and thermal management requirements.
In high-current applications, the MOSFET power dissipation,
package selection and heatsink are the dominant design
factors. The power dissipation includes two loss components;
conduction loss and switching loss. The conduction losses are
the largest component of power dissipation for both the upper
and the lower MOSFETs. These losses are distributed between
the two MOSFETs according to duty factor.
The switching losses seen when sourcing current will be
different from the switching losses seen when sinking current.
When sourcing current, the upper MOSFET realizes most of
the switching losses. The lower switch realizes most of the
switching losses when the converter is sinking current (see
Equations 13 and 14). These equations assume linear
voltage-current transitions and do not adequately model power
loss due the reverse-recovery of the upper and lower
MOSFET’s body diode.
The gate-charge losses are dissipated by the ISL6406 and
don't heat the MOSFETs. However, large gate-charge
increases the switching interval, t
SW
which increases the
MOSFET
switching losses. Ensure that both MOSFETs are
within their maximum junction temperature at high ambient
temperature by calculating the temperature rise according to
package thermal-resistance specifications. A separate heatsink
may be necessary depending upon MOSFET power, package
type, ambient temperature and air flow.
t
RISE
=
L x I
TRAN
V
IN
- V
OUT
(EQ. 9)
t
FALL
=
L x I
TRAN
V
OUT
(EQ. 10)
I
RMS
MAX
V
OUT
V
IN
--------------
I
OUT
MAX
2
1
12
------
V
IN
V
OUT
Lf
s
-----------------------------
V
OUT
V
IN
--------------


2
+


=
(EQ. 11)
P
LOWER
= Io
2
x r
DS(ON)
x (1 - D)
Where: D is the duty cycle = V
OUT
/ V
IN
,
t
SW
is the combined switch ON and OFF time, and
f
s
is the switching frequency.
Losses while sourcing current:
Losses while sinking current:
P
LOWER
Io
2
r
DS ON
1D
1
2
---
Io V
IN
t
SW
f
s
+=
P
UPPER
Io
2
r
DS ON
D
1
2
---
Io V
IN
t
SW
f
s
+=
P
UPPER
= Io
2
x r
DS(ON)
x D
(EQ. 12)
ISL6406

ISL6406IBZ-T

Mfr. #:
Manufacturer:
Renesas / Intersil
Description:
Switching Controllers HI EFF LWVAGE SINGLE PWM W/ADJ OUTPUT
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union