© 2008 Microchip Technology Inc. Preliminary DS22077B-page 7
24AA014H/24LC014H
FIGURE 4-2: ACKNOWLEDGE TIMING
SCL
987654321 123
Transmitter must release the SDA line at this point allowing
the Receiver to pull the SDA line low to acknowledge the
previous eight bits of data.
Receiver must release the SDA line at this
point so the Transmitter can continue
sending data.
SDA
Acknowledge
Bit
Data from transmitterData from transmitter
24AA014H/24LC014H
DS22077B-page 8 Preliminary © 2008 Microchip Technology Inc.
5.0 DEVICE ADDRESSING
A control byte is the first byte received following the
Start condition from the master device (Figure 5-1).
The control byte consists of a four-bit control code; for
the 24AA014H/24LC014H this is set as ‘1010’ binary
for read and write operations. The next three bits of the
control byte are the Chip Select bits (A2, A1, A0). The
Chip Select bits allow the use of up to eight 24AA014H/
24LC014H devices on the same bus and are used to
select which device is accessed. The Chip Select bits
in the control byte must correspond to the logic levels
on the corresponding A2, A1 and A0 pins for the device
to respond. These bits are in effect the three Most
Significant bits of the word address.
The last bit of the control byte defines the operation to
be performed. When set to a ‘1’, a read operation is
selected. When set to a ‘0’, a write operation is
selected. Following the Start condition, the 24AA014H/
24LC014H monitors the SDA bus, checking the control
byte being transmitted. Upon receiving a ‘1010’ code
and appropriate Chip Select bits, the slave device
outputs an Acknowledge signal on the SDA line.
Depending on the state of the R/W
bit, the 24AA014H/
24LC014H will select a read or write operation.
FIGURE 5-1: CONTROL BYTE FORMAT
5.1 Contiguous Addressing Across
Multiple Devices
The Chip Select bits A2, A1 and A0 can be used to
expand the contiguous address space for up to 8K bits
by adding up to eight 24AA014H/24LC014H devices on
the same bus. In this case, software can use A0 of the
control byte
as address bit A8, A1 as address bit A9,
and A2 as address bit A10. It is not possible to
sequentially read across device boundaries.
1010A2 A1 A0SACKR/W
Control Code
Chip Select
Bits
Slave Address
Acknowledge Bit
Start Bit
Read/Write
Bit
© 2008 Microchip Technology Inc. Preliminary DS22077B-page 9
24AA014H/24LC014H
6.0 WRITE OPERATIONS
6.1 Byte Write
Following the Start signal from the master, the device
code(4 bits), the Chip Select bits (3 bits) and the R/W
bit (which is a logic low) are placed onto the bus by the
master transmitter. The device will acknowledge this
control byte during the ninth clock pulse. The next byte
transmitted by the master is the word address and will
be written into the Address Pointer of the 24AA014H/
24LC014H. After receiving another Acknowledge
signal from the 24AA014H/24LC014H, the master
device will transmit the data word to be written into the
addressed memory location. The 24AA014H/
24LC014H acknowledges again and the master
generates a Stop condition. This initiates the internal
write cycle and the 24AA014H/24LC014H will not
generate Acknowledge signals during this time
(Figure 6-1). If an attempt is made to write to the
protected portion of the array when the hardware write
protection has been enabled, the device will
acknowledge the command, but no data will be written.
The write cycle time must be observed even if write
protection is enabled.
6.2 Page Write
The write-control byte, word address and the first data
byte are transmitted to the 24AA014H/24LC014H in the
same way as in a byte write. But instead of generating
a Stop condition, the master transmits up to 15
additional data bytes to the 24AA014H/24LC014H that
are temporarily stored in the on-chip page buffer and
will be written into the memory once the master has
transmitted a Stop condition. Upon receipt of each
word, the four lower order Address Pointer bits are
internally incremented by one.
The higher order four bits of the word address remain
constant. If the master should transmit more than 16
bytes prior to generating the Stop condition, the
address counter will roll over and the previously
received data will be overwritten. As with the byte write
operation, once the Stop condition is received, an
internal write cycle will begin (Figure 6-2). If an attempt
is made to write to the protected portion of the array
when the hardware write protection has been enabled,
the device will acknowledge the command, but no data
will be written. The write cycle time must be observed
even if write protection is enabled.
6.3 Write Protection
The WP pin must be tied to VCC or VSS. If tied to VCC,
half of the array will be write-protected (40h-7Fh). If the
WP pin is tied to V
SS, write operations to all address
locations are allowed.
FIGURE 6-1: BYTE WRITE
FIGURE 6-2: PAGE WRITE
Note: Page write operations are limited to writing
bytes within a single physical page,
regardless
of the number of bytes
actually being written. Physical page
boundaries start at addresses that are
integer multiples of the page buffer size (or
‘page size’) and end at addresses that are
integer multiples of [page size – 1]. If a
Page Write command attempts to write
across a physical page boundary, the
result is that the data wraps around to the
beginning of the current page (overwriting
data previously stored there), instead of
being written to the next page, as might be
expected. It is therefore necessary that the
application software prevent page write
operations that would attempt to cross a
page boundary.
S P
Bus Activity
Master
SDA Line
Bus Activity
S
T
A
R
T
S
T
O
P
Control
Byte
Word
Address
Data
A
C
K
A
C
K
A
C
K
S P
Bus Activity
Master
SDA Line
Bus Activity
S
T
A
R
T
Control
Byte
Word
Address (n)
Data (n) Data (n + 15)
S
T
O
P
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
Data (n +1)

24LC014H-E/MS

Mfr. #:
Manufacturer:
Microchip Technology
Description:
EEPROM 1K 128 X 8 SERIAL EE 2.5V EXT 1/2 ARRAYWP
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union