LTC3857
13
3857fd
OPERATION
(Refer to the Functional Diagram)
selects 535kHz. Placing a resistor between FREQ and SGND
allows the frequency to be programmed between 50kHz
and 900kHz, as shown in Figure 10.
A phase-locked loop (PLL) is available on the LTC3857
to synchronize the internal oscillator to an external clock
source that is connected to the PLLIN/MODE pin. The
phase detector adjusts the voltage (through an internal
lowpass filter) of the VCO input to align the turn-on of
controller 1’s external top MOSFET to the rising edge of
the synchronizing signal. Thus, the turn-on of controller 2’s
external top MOSFET is 180 degrees out of phase to the
rising edge of the external clock source.
The VCO input voltage is prebiased to the operating fre-
quency set by the FREQ pin before the external clock is
applied. If prebiased near the external clock frequency,
the PLL loop only needs to make slight changes to the
VCO input in order to synchronize the rising edge of the
external clock’s to the rising edge of TG1. The ability to
prebias the loop filter allows the PLL to lock-in rapidly
without deviating far from the desired frequency.
The typical capture range of the phase-locked loop is from
approximately 55kHz to 1MHz, with a guarantee over all
manufacturing variations to be between 75kHz and 850kHz.
In other words, the LTC3857’s PLL is guaranteed to lock
to an external clock source whose frequency is between
75kHz and 850kHz.
The typical input clock thresholds on the PLLIN/MODE
pin are 1.6V (rising) and 1.1V (falling).
PolyPhase
®
Applications (CLKOUT and PHASMD Pins)
The LTC3857 features two pins (CLKOUT and PHASMD)
that allow other controller ICs to be daisy-chained with
the LTC3857 in PolyPhase applications. The clock output
signal on the CLKOUT pin can be used to synchronize
additional power stages in a multiphase power supply
solution feeding a single, high current output or multiple
separate outputs. The PHASMD pin is used to adjust the
phase of the CLKOUT signal as well as the relative phases
between the two internal controllers, as summarized in
Table 1. The phases are calculated relative to the zero
degrees phase being defined as the rising edge of the top
gate driver output of controller 1 (TG1).
Table 1
V
PHASMD
CONTROLLER 2 PHASE CLKOUT PHASE
GND 180° 60°
Floating 180° 90°
INTV
CC
240° 120°
Output Overvoltage Protection
An overvoltage comparator guards against transient over-
shoots as well as other more serious conditions that may
overvoltage the output. When the V
FB
pin rises by more
than 10% above its regulation point of 0.800V, the top
MOSFET is turned off and the bottom MOSFET is turned
on until the overvoltage condition is cleared.
Power Good (PGOOD1 and PGOOD2) Pins
Each PGOOD pin is connected to an open drain of an
internal N-channel MOSFET. The MOSFET turns on and
pulls the PGOOD pin low when the corresponding V
FB
pin
voltage is not within ±10% of the 0.8V reference voltage.
The PGOOD pin is also pulled low when the corresponding
RUN pin is low (shut down). When the V
FB
pin voltage
is within the ±10% requirement, the MOSFET is turned
off and the pin is allowed to be pulled up by an external
resistor to a source no greater than 6V.
Foldback Current
When the output voltage falls to less than 70% of its
nominal level, foldback current limiting is activated, pro-
gressively lowering the peak current limit in proportion to
the severity of the overcurrent or short-circuit condition.
Foldback current limiting is disabled during the soft-start
interval (as long as the V
FB
voltage is keeping up with the
TRACK/SS voltage).
Theory and Benefits of 2-Phase Operation
Why the need for 2-phase operation? Up until the 2-phase
family, constant-frequency dual switching regulators
operated both channels in phase (i.e., single phase
operation). This means that both switches turned on at
the same time, causing current pulses of up to twice the
amplitude of those for one regulator to be drawn from the
input capacitor and battery. These large amplitude current
LTC3857
14
3857fd
OPERATION
(Refer to the Functional Diagram)
pulses increased the total RMS current flowing from the
input capacitor, requiring the use of more expensive input
capacitors and increasing both EMI and losses in the input
capacitor and battery.
With 2-phase operation, the two channels of the dual
switching regulator are operated 180 degrees out of phase.
This effectively interleaves the current pulses drawn by the
switches, greatly reducing the overlap time where they add
together. The result is a significant reduction in total RMS
input current, which in turn allows less expensive input
capacitors to be used, reduces shielding requirements for
EMI and improves real world operating efficiency.
Figure 1 compares the input waveforms for a single-phase
dual switching regulator to a 2-phase dual switching
regulator. An actual measurement of the RMS input cur-
rent under these conditions shows that 2-phase operation
dropped the input current from 2.53A
RMS
to 1.55A
RMS
.
While this is an impressive reduction in itself, remember
that the power losses are proportional to I
RMS
2
, meaning
that the actual power wasted is reduced by a factor of 2.66.
The reduced input ripple voltage also means less power is
lost in the input power path, which could include batter-
ies, switches, trace/connector resistances and protection
circuitry. Improvements in both conducted and radiated
EMI also directly accrue as a result of the reduced RMS
input current and voltage.
Of course, the improvement afforded by 2-phase operation
is a function of the dual switching regulators relative duty
cycles which, in turn, are dependent upon the input voltage
V
IN
(Duty Cycle = V
OUT
/V
IN
). Figure 2 shows how the RMS
input current varies for single-phase and 2-phase operation
for 3.3V and 5V regulators over a wide input voltage range.
It can readily be seen that the advantages of 2-phase op-
eration are not just limited to a narrow operating range,
for most applications is that 2-phase operation will reduce
the input capacitor requirement to that for just one chan-
nel operating at maximum current and 50% duty cycle.
I
IN(MEAS)
= 2.53A
RMS
I
IN(MEAS)
= 1.55A
RMS
3857 F01
5V SWITCH
20V/DIV
3.3V SWITCH
20V/DIV
INPUT CURRENT
5A/DIV
INPUT VOLTAGE
500mV/DIV
Figure 1. Input Waveforms Comparing Single-Phase (a) and 2-Phase (b) Operation for Dual Switching Regulators
Converting 12V to 5V and 3.3V at 3A Each. The Reduced Input Ripple with the 2-Phase Regulator Allows
Less Expensive Input Capacitors, Reduces Shielding Requirements for EMI and Improves Efficiency
Figure 2. RMS Input Current Comparison
INPUT VOLTAGE (V)
0
INPUT RMS CURRENT (A)
3.0
2.5
2.0
1.5
1.0
0.5
0
10 20 30 40
3857 F02
SINGLE PHASE
DUAL CONTROLLER
2-PHASE
DUAL CONTROLLER
V
O1
= 5V/3A
V
O2
= 3.3V/3A
LTC3857
15
3857fd
APPLICATIONS INFORMATION
The Typical Application on the first page is a basic LTC3857
application circuit. LTC3857 can be configured to use
either DCR (inductor resistance) sensing or low value
resistor sensing. The choice between the two current
sensing schemes is largely a design trade-off between
cost, power consumption and accuracy. DCR sensing
is becoming popular because it saves expensive current
sensing resistors and is more power efficient, especially
in high current applications. However, current sensing
resistors provide the most accurate current limits for the
controller. Other external component selection is driven
by the load requirement, and begins with the selection of
R
SENSE
(if R
SENSE
is used) and inductor value. Next, the
power MOSFETs and Schottky diodes are selected. Finally,
input and output capacitors are selected.
Current Limit Programming
The I
LIM
pin is a tri-level logic input which sets the maxi-
mum current limit of the controller. When I
LIM
is grounded,
the maximum current limit threshold voltage of the cur-
rent comparator is programmed to be 30mV. When I
LIM
is floated, the maximum current limit threshold is 50mV.
When I
LIM
is tied to INTV
CC
, the maximum current limit
threshold is set to 75mV.
SENSE
+
and SENSE
Pins
The SENSE
+
and SENSE
pins are the inputs to the cur-
rent comparators. The common mode voltage range on
these pins is 0V to 28V (abs max), enabling the LTC3857
to regulate output voltages up to a nominal 24V (allowing
margin for tolerances and transients).
The SENSE
+
pin is high impedance over the full common
mode range, drawing at most ±1µA. This high impedance
allows the current comparators to be used in inductor
DCR sensing.
The impedance of the SENSE
pin changes depending on
the common mode voltage. When SENSE
is less than
INTV
CC
– 0.5V, a small current of less than 1µA flows out
of the pin. When SENSE
is above INTV
CC
+ 0.5V, a higher
current (~550µA) flows into the pin. Between INTV
CC
0.5V and INTV
CC
+ 0.5V, the current transitions from the
smaller current to the higher current.
Filter components mutual to the sense lines should be
placed close to the LTC3857, and the sense lines should
run close together to a Kelvin connection underneath the
current sense element (shown in Figure 3). Sensing cur-
rent elsewhere can effectively add parasitic inductance
and capacitance to the current sense element, degrading
the information at the sense terminals and making the
programmed current limit unpredictable. If inductor DCR
sensing is used (Figure 4b), sense resistor R1 should be
C
OUT
TO SENSE FILTER,
NEXT TO THE CONTROLLER
INDUCTOR OR R
SENSE
3857 F03
Figure 3. Sense Lines Placement with Inductor or Sense Resistor
V
IN
V
IN
R
SENSE
INTV
CC
BOOST
TG
SW
BG
PLACE CAPACITOR NEAR
SENSE PINS
SENSE
+
SENSE
SGND
LTC3857
V
OUT
3857 F04a
V
IN
V
IN
INTV
CC
BOOST
TG
SW
BG
*PLACE C1 NEAR
SENSE PINS
INDUCTOR
DCRL
SENSE
+
SENSE
SGND
LTC3857
V
OUT
3857 F04b
R1
R2C1*
(R1
||
R2) • C1 =
L
DCR
R
SENSE(EQ)
= DCR
R2
R1 + R2
(4a) Using a Resistor to Sense Current
(4b) Using the Inductor DCR to Sense Current
Figure 4. Current Sensing Methods

LTC3857IUH#PBF

Mfr. #:
Manufacturer:
Analog Devices / Linear Technology
Description:
Switching Voltage Regulators Low IQ, Dual, 2-Phase Synchronous Step Down Controller
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union