7
LT1813/LT1814
18134fa
TEMPERATURE (°C)
–50 –25
0
SUPPLY CURRENT (mA)
2
5
0
50
75
1813/14 G01
1
4
3
25
100
125
PER AMPLIFIER
V
S
= ± 5V
V
S
= ± 2.5V
SUPPLY VOLTAGE (± V)
0
V
INPUT COMMON MODE RANGE (V)
1.0
1.5
2.0
V
+
2.0
1.5
2
4
5
1813/14 G02
0.5
1.0
0.5
1
3
6
7
T
A
= 25°C
V
OS
< 1mV
INPUT COMMON MODE VOLTAGE (V)
5.0
INPUT BIAS CURRENT (µA)
1.0
0.5
T
A
= 25°C
V
S
= ± 5V
5.0
1813/14 G03
1.5
2.0
2.5
0
2.5
0
TEMPERATURE (°C)
–50
INPUT BIAS CURRENT (µA)
0.8
0.7
0.6
25 75
1813/14 G04
0.9
1.0
–25 0
50 100 125
1.1
1.2
V
S
= ± 5V
FREQUENCY (Hz)
10 100
1
10
i
n
100
0.1
1
10
1k 10k 100k
1813/14 G05
T
A
= 25°C
V
S
= ± 5V
A
V
= 101
R
S
= 10k
e
n
INPUT VOLTAGE NOISE (nV/Hz)
INPUT CURRENT NOISE (pA/Hz)
LOAD RESISTANCE ()
100
60
OPEN-LOOP GAIN (dB)
62.5
65.0
67.5
70.0
75.0
1k 10k
1813/14 G06
72.5
T
A
= 25°C
V
S
= ± 5V
V
S
= ± 2.5V
Supply Current vs Temperature
Input Common Mode Range vs
Supply Voltage
Input Bias Current
vs Common Mode Voltage
Input Bias Current vs Temperature
Input Noise Spectral Density
Open-Loop Gain
vs Resistive Load
TYPICAL PERFOR A CE CHARACTERISTICS
UW
TEMPERATURE (°C)
–50
OPEN-LOOP GAIN (dB)
70.0
72.5
75.0
25 75
1813/14 G07
67.5
65.0
–25 0
50 100 125
62.5
60.0
V
S
= ± 5V
V
O
= ± 3V
R
L
= 500
R
L
= 100
SUPPLY VOLTAGE (± V)
0
V
OUTPUT VOLTAGE SWING (V)
1.0
1.5
2.0
V
+
2.0
1.5
2
4
5
1813/14 G02
0.5
1.0
0.5
1
3
6
7
T
A
= 25°C
V
IN
= 30mV
R
L
= 100
R
L
= 100
R
L
= 500
R
L
= 500
OUTPUT CURRENT (mA)
–60
OUTPUT VOLTAGE SWING (V)
2.0
1.0
1.5
V
+
0.5
20
1813/14 G09
2.0
1.0
1.5
0.5
V
–40
–20
0
40
60
V
S
= ± 5V
V
IN
= 30mV
85°C
25°C
–40°C
Open-Loop Gain vs Temperature
Output Voltage Swing
vs Supply Voltage
Output Voltage Swing
vs Load Current
8
LT1813/LT1814
18134fa
TYPICAL PERFOR A CE CHARACTERISTICS
UW
TEMPERATURE (°C)
–50
80
OUTPUT SHORT-CIRCUIT CURRENT (mA)
90
100
110
120
25 0 25 50
1813/14 G10
75 100 125
V
S
= ± 5V
SOURCE
SINK
SETTLING TIME (ns)
0
–5
OUTPUT STEP (V)
–4
–2
–1
0
5
2
10
20
25
1813/14 G11
–3
3
4
1
5
15
30
35
V
S
= ± 5V
A
V
= –1
R
F
= 500
C
F
= 3pF
0.1% SETTLING
FREQUENCY (Hz)
10k 100k
0.001
OUTPUT IMPEDANCE ()
0.1
100
1M 10M 100M
1813/14 G12
0.01
1
10
A
V
= 100
A
V
= 10
A
V
= 1
T
A
= 25°C
V
S
= ± 5V
FREQUENCY (Hz)
10
GAIN (dB)
20
40
60
70
10k 1M 10M 1000M
1813/14 G13
0
100k
100M
50
30
–10
0
PHASE (DEG)
20
60
100
120
–20
80
40
–40
PHASE
GAIN
±5V
±5V
±2.5V
±2.5V
T
A
= 25°C
A
V
= –1
R
F
= R
G
= 500
FREQUENCY (Hz)
–70
CROSSTALK (dB)
–60
–40
–30
–10
0
100k 10M 100M
1813/14 G14
–80
1M
1000M
–20
–50
–90
T
A
= 25°C
A
V
= 10
V
IN
= 0dBm
R
L
= 100
TEMPERATURE (°C)
–50 –25
GAIN BANDWIDTH (MHz)
PHASE MARGIN (DEG)
85
115
0
50
75
1813/14 G15
36
40
38
105
95
25
100
125
GBW
V
S
= ± 5V
GBW
V
S
= ±2.5V
PHASE MARGIN
V
S
= ±2.5V
PHASE MARGIN
V
S
= ±5V
R
L
= 500
Output Short-Circuit Current
vs Temperature
Gain Bandwidth and Phase
Margin vs Temperature
Crosstalk vs Frequency
Gain and Phase vs Frequency
Output Impedance vs Frequency
Settling Time vs Output Step
FREQUENCY (Hz)
1M
–6
VOLTAGE MAGNITUDE (dB)
–4
–2
0
2
10M 100M 500M
1813/14 G16
–8
–10
–12
–14
4
6
T
A
= 25°C
A
V
= 1
NO R
L
V
S
= ±2.5V
V
S
= ±5V
FREQUENCY (Hz)
1M
2
VOLTAGE MAGNITUDE (dB)
4
6
8
10M 100M 500M
1813/14 G17
0
–2
–4
–6
V
S
= ±5V
T
A
= 25°C
A
V
= 2
R
L
= 100
V
S
= ±2.5V
FREQUENCY (Hz)
1
0
VOLTAGE MAGNITUDE (dB)
4
8
10M 100M 200M
1813/14 G18
–4
–8
12
T
A
= 25°C
A
V
= –1
V
S
= ±5V
R
F
= R
G
= 500
NO R
L
C
L
= 1000pF
C
L
= 500pF
C
L
= 200pF
C
L
= 100pF
C
L
= 50pF
C
L
= 0
Frequency Response
vs Capacitive Load, A
V
= –1
Frequency Response
vs Supply Voltage, A
V
= 2
Frequency Response
vs Supply Voltage, A
V
= 1
9
LT1813/LT1814
18134fa
TYPICAL PERFOR A CE CHARACTERISTICS
UW
SUPPLY VOLTAGE (±V)
0
GAIN BANDWIDTH (MHz)
PHASE MARGIN (DEG)
3
1813/14 G19
70 45
40
35
12 4
110
90
567
T
A
= 25°C
GBW
R
L
= 500
GBW
R
L
= 100
PHASE MARGIN
R
L
= 100
PHASE MARGIN
R
L
= 500
FREQUENCY (Hz)
1k 10k 100k
40
POWER SUPPLY REJECTION RATIO (dB)
60
80
1M 10M 100M
1813/14 G20
20
0
100
PSRR
+PSRR
T
A
= 25°C
A
V
= 1
V
S
= ±5V
FREQUENCY (Hz)
1k 10k 100k
40
COMMON MODE REJECTION RATIO (dB)
60
80
1M 10M 100M
1813/14 G21
20
0
100
T
A
= 25°C
V
S
= ±5V
Gain Bandwidth and Phase
Margin vs Supply Voltage
Power Supply Rejection Ratio
vs Frequency
Common Mode Rejection Ratio
vs Frequency
Slew Rate vs Supply Voltage
Slew Rate vs Supply Voltage
Slew Rate vs Input Level
SUPPLY VOLTAGE (±V)
0
0
SLEW RATE (V/µs)
100
300
400
500
1000
700
2
4
5
1813/14 G22
200
800
900
600
1
3
6
7
T
A
=25°C
A
V
= –1
V
IN
= V
S(TOTAL)
/2
R
F
= R
G
= R
L
= 500
SR
+
SR
SUPPLY VOLTAGE (±V)
0
200
SLEW RATE (V/µs)
300
450
2
4
5
1813/14 G23
250
400
350
1
3
6
7
T
A
=25°C
A
V
= –1
V
IN
= ±1V
R
F
= R
G
= R
L
= 500
SR
SR
+
INPUT LEVEL (V
P-P
)
0
200
SLEW RATE (V/µs)
600
1200
2
4
5
1813/14 G24
400
1000
800
1
3
6
78
T
A
=25°C
A
V
= –1
V
S
= ±5V
R
F
= R
G
= R
L
= 500
SR
SR
+
Slew Rate vs Temperature
Undistorted Output Swing
vs Frequency
Total Harmonic Distortion + Noise
vs Frequency
TEMPERATURE (°C)
–50
200
SLEW RATE (V/µs)
300
500
600
700
50
1100
1813/14 G25
400
0 125100
25
–25 75
800
900
1000
SR
+
V
S
= ± 5V
SR
+
V
S
= ±2.5V
SR
V
S
= ±2.5V
SR
V
S
= ± 5V
FREQUENCY (Hz)
10 100
0.001
0.002
0.005
TOTAL HARMONIC DISTORTION + NOISE (%)
0.01
1k 10k 100k
1813/14 G26
A
V
= –1
A
V
= 1
T
A
= 25°C
V
S
= ± 5V
V
O
= 2V
P-P
R
L
= 500
FREQUENCY (Hz)
100k
5
OUTPUT VOLTAGE (V
P-P
)
6
7
8
9
1M 10M 100M
1813/14 G27
4
3
1
0
2
A
V
= –1
A
V
= 1
V
S
= ± 5V
R
L
= 100
2% MAX DISTORTION

LT1814IGN#PBF

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
High Speed Operational Amplifiers Quad 100MHz 3.6mA OA
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union