1
2013 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. DSC-4675/5
©
MARCH 2013
IDT, IDT logo are registered trademarks of Integrated Device Technology, Inc. The SuperSync FIFO is a trademark of Integrated Device Technology, Inc.
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES
CMOS SuperSync FIFO™
65,536 x 9
131,072 x 9
IDT72281
IDT72291
FEATURES:
Choose among the following memory organizations:
IDT72281 65,536 x 9
IDT72291 131,072 x 9
Pin-compatible with the IDT72261LA/72271LA SuperSync FIFOs
10ns read/write cycle time (6.5ns access time)
Fixed, low first word data latency time
Auto power down minimizes standby power consumption
Master Reset clears entire FIFO
Partial Reset clears data, but retains programmable
settings
Retransmit operation with fixed, low first word data
latency time
Empty, Full and Half-Full flags signal FIFO status
Programmable Almost-Empty and Almost-Full flags, each flag
can default to one of two preselected offsets
Program partial flags by either serial or parallel means
Select IDT Standard timing (using EF and FF flags) or First
Word Fall Through timing (using OR and IR flags)
Output enable puts data outputs into high impedance state
Easily expandable in depth and width
Independent Read and Write clocks (permit reading and writing
simultaneously)
Available in the 64-pin Thin Quad Flat Pack (TQFP) and the 64-
pin Slim Thin Quad Flat Pack (STQFP)
High-performance submicron CMOS technology
Industrial temperature range (-40°C to +85°C) is available
DESCRIPTION:
The IDT72281/72291 are exceptionally deep, high speed, CMOS First-In-
First-Out (FIFO) memories with clocked read and write controls. These FIFOs
offer numerous improvements over previous SuperSync FIFOs, including the
following:
The limitation of the frequency of one clock input with respect to the other has
been removed. The Frequency Select pin (FS) has been removed, thus
it is no longer necessary to select which of the two clock inputs, RCLK or
WCLK, is running at the higher frequency.
The period required by the retransmit operation is now fixed and short.
The first word data latency period, from the time the first word is written to an
empty FIFO to the time it can be read, is now fixed and short. (The variable
clock cycle counting delay associated with the latency period found on
previous SuperSync devices has been eliminated on this SuperSync family.)
SuperSync FIFOs are particularly appropriate for network, video, telecom-
munications, data communications and other applications that need to buffer
large amounts of data.
INPUT REGISTER
OUTPUT REGISTER
RAM ARRAY
65,536 x 9
131,072 x 9
FLAG
LOGIC
FF/IR
PAF
EF/OR
PAE
HF
READ
CONTROL
LOGIC
WRITE CONTROL
LOGIC
RESET
LOGIC
WEN
WCLK
D
0
-D
8
LD
MRS
REN
RCLK
OE
Q
0
-Q
8
OFFSET REGISTER
PRS
FWFT/SI
SEN
RT
4675 drw01
WRITE POINTER
READ POINTER
FUNCTIONAL BLOCK DIAGRAM
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72281/72291
CMOS SuperSync FIFO™ 65,536 x 9 and 131,072 x 9
2
TQFP (PN64-1, ORDER CODE: PF)
STQFP (PP64-1, ORDER CODE: TF)
TOP VIEW
DESCRIPTION (CONTINUED)
PIN 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
WEN
SEN
DC
(1)
V
CC
V
CC
GND
(2)
GND
(2)
GND
(2)
GND
(2)
GND
(2)
GND
(2)
GND
(2)
GND
(2)
GND
(2)
D8
D7
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
DNC
(3)
DNC
(3)
GND
DNC
(3)
DNC
(3)
V
CC
DNC
(3)
DNC
(3)
DNC
(3)
GND
DNC
(3)
DNC
(3)
Q8
Q7
Q6
GND
WCLK
PRS
MRS
LD
FWFT/SI
GND
FF/IR
PAF
HF
V
CC
PAE
EF/OR
RCLK
REN
RT
OE
Q5
Q4
V
CC
Q3
Q2
GND
Q1
Q0
GND
D0
D1
D2
D3
D4
D5
D6
4675 drw 02
The input port is controlled by a Write Clock (WCLK) input and a Write Enable
(WEN) input. Data is written into the FIFO on every rising edge of WCLK when
WEN is asserted. The output port is controlled by a Read Clock (RCLK) input
and Read Enable (REN) input. Data is read from the FIFO on every rising edge
of RCLK when REN is asserted. An Output Enable (OE) input is provided for
three-state control of the outputs.
The frequencies of both the RCLK and the WCLK signals may vary from 0
to f
MAX with complete independence. There are no restrictions on the frequency
of the one clock input with respect to the other.
There are two possible timing modes of operation with these devices: IDT
Standard mode and First Word Fall Through (FWFT) mode.
In IDT Standard mode, the first word written to an empty FIFO will not appear
on the data output lines unless a specific read operation is performed. A read
operation, which consists of activating REN and enabling a rising RCLK edge,
will shift the word from internal memory to the data output lines.
In FWFT mode, the first word written to an empty FIFO is clocked directly to
the data output lines after three transitions of the RCLK signal. A REN does not
have to be asserted for accessing the first word. However, subsequent words
written to the FIFO do require a LOW on REN for access. The state of the FWFT/
SI input during Master Reset determines the timing mode in use.
For applications requiring more data storage capacity than a single FIFO can
provide, the FWFT timing mode permits depth expansion by chaining FIFOs
in series (i.e. the data outputs of one FIFO are connected to the corresponding
data inputs of the next). No external logic is required.
These FIFOs have five flag pins, EF/OR (Empty Flag or Output Ready), FF/
IR (Full Flag or Input Ready), HF (Half-full Flag), PAE (Programmable Almost-
Empty flag) and PAF (Programmable Almost-Full flag). The EF and FF functions
are selected in IDT Standard mode. The IR and OR functions are selected in
NOTES:
1. DC = Don’t Care. Must be tied to GND or VCC, cannot be left open.
2. This pin may either be tied to GND or left open.
3. DNC = Do Not Connect.
PIN CONFIGURATIONS
3
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72281/72291
CMOS SuperSync FIFO™ 65,536 x 9 and 131,072 x 9
DESCRIPTION (CONTINUED)
Figure 1. Block Diagram of Single 65,536 x 9 and 131,072 x 9 Synchronous FIFO
DATA OUT (Q
0
- Q
n
)
DATA IN (D
0
- D
n
)
MASTER RESET (MRS)
READ CLOCK (RCLK)
READ ENABLE (REN)
OUTPUT ENABLE (OE)
EMPTY FLAG/OUTPUT READY (EF/OR)
PROGRAMMABLE ALMOST-EMPTY (PAE)
WRITE CLOCK (WCLK)
WRITE ENABLE (WEN)
LOAD (LD)
FULL FLAG/INPUT READY (FF/IR)
PROGRAMMABLE ALMOST-FULL (PAF)
IDT
72281
72291
PARTIAL RESET (PRS)
FIRST WORD FALL THROUGH/SERIAL INPUT
(FWFT/SI)
RETRANSMIT (RT)
4675 drw 03
HALF-FULL FLAG (HF)
SERIAL ENABLE(SEN)
FWFT mode. HF, PAE and PAF are always available for use, irrespective of
timing mode.
PAE and PAF can be programmed independently to switch at any point in
memory. (See Table I and Table II.) Programmable offsets determine the flag
switching threshold and can be loaded by two methods: parallel or serial. Two
default offset settings are also provided, so that PAE can be set to switch at 127
or 1,023 locations from the empty boundary and the PAF threshold can be set
at 127 or 1,023 locations from the full boundary. These choices are made with
the LD pin during Master Reset.
For serial programming, SEN together with LD on each rising edge of WCLK,
are used to load the offset registers via the Serial Input (SI). For parallel
programming, WEN together with LD on each rising edge of WCLK, are used
to load the offset registers via D
n. REN together with LD on each rising edge
of RCLK can be used to read the offsets in parallel from Qn regardless of whether
serial or parallel offset loading has been selected.
During Master Reset (MRS) the following events occur: The read and write
pointers are set to the first location of the FIFO. The FWFT pin selects IDT
Standard mode or FWFT mode. The LD pin selects either a partial flag default
setting of 127 with parallel programming or a partial flag default setting of 1,023
with serial programming. The flags are updated according to the timing mode
and default offsets selected.
The Partial Reset (PRS) also sets the read and write pointers to the first
location of the memory. However, the timing mode, partial flag programming
method, and default or programmed offset settings existing before Partial Reset
remain unchanged. The flags are updated according to the timing mode and
offsets in effect. PRS is useful for resetting a device in mid-operation, when
reprogramming partial flags would be undesirable.
The Retransmit function allows data to be reread from the FIFO more than
once. A LOW on the RT input during a rising RCLK edge initiates a retransmit
operation by setting the read pointer to the first location of the memory array.
If, at any time, the FIFO is not actively performing an operation, the chip will
automatically power down. Once in the power down state, the standby supply
current consumption is minimized. Initiating any operation (by activating control
inputs) will immediately take the device out of the power down state.
The IDT72281/72291 are fabricated using high speed submicron CMOS
technology.

72281L15TF8

Mfr. #:
Manufacturer:
Description:
IC FIFO 32768X18 LP 15NS 64QFP
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union