NCV7708
http://onsemi.com
13
Various copper areas used
for heat spreading
Active Area (red)
Lead #1
Lead #8 (one of 8 thermal leads)
Thermal Model
Package Construction
With and Without Mold Compound
Molded as
1
/
4
Symmetry
Figure 8. qJA vs. Copper Spreader Area
COPPER AREA (mm
2
)
10003002001000
40
50
60
70
80
90
110
qJA (°C/W)
400 700600500 800 900
100
1 oz
2 oz
100
10
1.0
0.1
0.01
TIME (sec)
R(t) (°C/W)
0.000001 0.00001 0.0001 0.001 0.01 0.1 1.0 10 100 1000
Cu_Area = 239 mm
2
1 oz
Figure 9. SOIC 28−Lead Single Pulse Heating Curve
Cu_Area = 986 mm
2
1 oz 1 S
NCV7708
http://onsemi.com
14
Cu_Area = 986 mm
2
1 oz 1 S
D = 0.50
D = 0.20
D = 0.10
D = 0.05
D = 0.01
Figure 10. SOIC 28−Lead Thermal Duty Cycle Curves on 1, Spreader Test Board
100
10
1.0
0.1
0.01
PULSE DURATION (sec)
R(t) (°C/W)
0.000001 0.00001 0.0001 0.001 0.01 0.1 1.0 10 100 1000
SOIC 28−lead Thermal RC Network Models
239 mm
2
986 mm
2
239 mm
2
986 mm
2
Cu
Area
Cauer Network Foster Network
C’s C’s Units Tau Tau Units
2.68E−05 2.68E−05 W−s/C 1.00E−06 1.00E−06 sec
1.02E−04 1.02E−04 W−s/C 1.00E−05 1.00E−05 sec
2.82E−04 2.84E−04 W−s/C 1.00E−04 1.00E−04 sec
9.58E−04 9.73E−04 W−s/C 5.00E−04 5.00E−04 sec
2.72E−03 2.63E−03 W−s/C 1.00E−03 1.00E−03 sec
2.02E−03 1.95E−03 W−s/C 1.00E−02 1.00E−02 sec
2.93E−02 3.12E−02 W−s/C 8.00E−02 8.00E−02 sec
0.116 0.091 W−s/C 4.00E−01 4.00E−01 sec
0.16 0.21 W−s/C 2.00E+00 2.00E+00 sec
1 1 W−s/C 6.00E+01 5.50E+01 sec
R’s R’s R’s R’s
0.048 0.048 °C/W 2.84E−02 2.84E−02 °C/W
0.115 0.115 °C/W 6.14E−02 6.14E−02 °C/W
0.352 0.349 °C/W 1.94E−01 1.94E−01 °C/W
0.777 0.776 °C/W 0.100 0.100 °C/W
0.599 0.630 °C/W 0.500 0.480 °C/W
1.677 1.667 °C/W 1.839 1.933 °C/W
2.968 3.151 °C/W 2.207 1.836 °C/W
6.424 5.527 °C/W 1.249 2.291 °C/W
6.940 6.689 °C/W 8.225 8.000 °C/W
53.503 36.970 °C/W 59.000 41.000 °C/W
Bold face items in the Cauer network above, represent the package without the external thermal system. The Bold face items
in the Foster network are computed by the square root of time constant R(t) = 28.4 * sqrt(time(sec)). The constant is derived
based on the active area of the device with silicon and epoxy at the interface of the heat generation.
NCV7708
http://onsemi.com
15
The Cauer networks generally have physical significance
and may be divided between nodes to separate thermal
behavior due to one portion of the network from another.
The Foster networks, though when sorted by time constant
(as above) bear a rough correlation with the Cauer networks,
are really only convenient mathematical models. Both
Foster and Cauer networks can be easily implemented using
circuit simulating tools, whereas Foster networks may be
more easily implemented using mathematical tools (for
instance, in a spreadsheet program), according to the
following formula:
R(t) +
ȍ
n
i+1
R
i
ǒ
1 * e
*tńtau
i
Ǔ
Time constants are not simple RC products. Amplitudes
of mathematical solution are not the resistance values.
Each rung is exactly characterized by its RC−product
time constant; amplitudes are the resistances.
Figure 11. Grounded Capacitor Thermal Network (“Cauer” Ladder)
Ambient
(thermal ground)
Junction
R
1
R
2
R
3
R
n
Figure 12. Non−Grounded Capacitor Thermal Ladder (“Foster” Ladder)
C
1
C
2
C
3
C
n
Ambient
(thermal ground)
Junction
R
1
R
2
R
3
R
n
C
1
C
2
C
3
C
n

NCV7708DW

Mfr. #:
Manufacturer:
ON Semiconductor
Description:
Motor / Motion / Ignition Controllers & Drivers HALF BRIDGE DRIVER
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet