MCP3905/06
DS21948E-page 16 © 2009 Microchip Technology Inc.
4.1 Analog Inputs
The MCP3905/06 analog inputs can be connected
directly to the current and voltage transducers (such as
shunts or current transformers). Each input pin is
protected by specialized Electrostatic Discharge (ESD)
structures that are certified to pass 5 kV HBM and
500V MM contact charge. These structures also allow
up to ±6V continuous voltage to be present at their
inputs without the risk of permanent damage.
Both channels have fully differential voltage inputs for
better noise performance. The absolute voltage at each
pin relative to A
GND
should be maintained in the ±1V
range during operation in order to ensure the measure-
ment error performance. The common mode signals
should be adapted to respect both the previous
conditions and the differential input voltage range. For
best performance, the common mode signals should
be referenced to A
GND
.
The current channel comprises a PGA on the front-end
to allow for smaller signals to be measured without
additional signal conditioning. The maximum
differential voltage specified on Channel 0 is equal to
±470 mV/Gain (see Table 4-1). The maximum peak
voltage specified on Channel 1 is equal to ±660 mV.
4.2 16-Bit Delta-Sigma ADCs
The ADCs used in the MCP3905/06 for both current
and voltage channel measurements are delta-sigma
ADCs. They comprise a second-order, delta-sigma
modulator using a multi-bit DAC and a third-order SINC
filter. The delta-sigma architecture is very appropriate
for the applications targeted by the MCP3905, because
it is a waveform-oriented converter architecture that
can offer both high linearity and low distortion
performance throughout a wide input dynamic range. It
also creates minimal requirements for the anti-aliasing
filter design. The multi-bit architecture used in the ADC
minimizes quantization noise at the output of the
converters without disturbing the linearity.
Both ADCs have a 16-bit resolution, allowing wide input
dynamic range sensing. The oversampling ratio of both
converters is 64. Both converters are continuously
converting during normal operation. When the MCLR
pin is low, both converters will be in Reset and output
code 0x0000h. If the voltage at the inputs of the ADC is
larger than the specified range, the linearity is no longer
specified. However, the converters will continue to
produce output codes until their saturation point is
reached. The DC saturation point is around 700 mV for
Channel 0 and 1V for Channel 1, using internal voltage
reference.
The clocking signals for the ADCs are equally
distributed between the two channels in order to
minimize phase delays to less than 1 MCLK period
(see Section 3.2 “High-Pass Filter Input Logic Pin
(HPF)”). The SINC filters main notch is positioned at
MCLK/256 (14 kHz with MCLK = 3.58 MHz), allowing
the user to be able to measure wide harmonic content
on either channel. The magnitude response of the
SINC filter is shown in Figure 4-2.
FIGURE 4-2: SINC Filter Magnitude
Response (MCLK = 3.58 MHz).
4.3 Ultra-Low Drift V
REF
The MCP3905/06 contains an internal voltage
reference source specially designed to minimize drift
over temperature. This internal V
REF
supplies
reference voltage to both current and voltage channel
ADCs. The typical value of this voltage reference is
2.4V, ±100 mV. The internal reference has a very low
typical temperature coefficient of ±15 ppm/°C, allowing
the output frequencies to have minimal variation with
respect to temperature since they are proportional to
(1/V
REF
)².
REFIN/OUT is the output pin for the voltage reference.
Appropriate bypass capacitors must be connected to
the REFIN/OUT pin for proper operation (see
Section 5.0 “Applications Information”). The
voltage reference source impedance is typically 4 kΩ,
which enables this voltage reference to be overdriven
by an external voltage reference source.
TABLE 4-1: MCP3905 GAIN SELECTIONS
G1 G0 CH0 Gain
Maximum
CH0 Voltage
00 470mV
01 235mV
10 60mV
11 16 ±30 mV
TABLE 4-2: MCP3906 GAIN SELECTIONS
G1 G0 CH0 Gain
Maximum
CH0 Voltage
00 470mV
01 32 ±15 mV
10 60mV
11 16 ±30 mV
-120
-100
-80
-60
-40
-20
0
0 5 10 15 20 25 30
Frequency (kHz)
Normal Mode Rejection (dB)
© 2009 Microchip Technology Inc. DS21948E-page 17
MCP3905/06
If an external voltage reference source is connected to
the REFIN/OUT pin, the external voltage will be used
as the reference for both current and voltage channel
ADCs. The voltage across the source resistor will then
be the difference between the internal and external
voltage. The allowed input range for the external
voltage source goes from 2.2V to 2.6V for accurate
measurement error. A V
REF
value outside of this range
will cause additional heating and power consumption
due to the source resistor, which might affect
measurement error.
4.4 Power-On Reset (POR)
The MCP3905/06 contains an internal POR circuit that
monitors analog supply voltage AV
DD
during operation.
This circuit ensures correct device startup at system
power-up/power-down events. The POR circuit has
built-in hysteresis and a timer to give a high degree of
immunity to potential ripple and noise on the power
supplies, allowing proper settling of the power supply
during power-up. A 0.1 µF decoupling capacitor should
be mounted as close as possible to the AV
DD
pin,
providing additional transient immunity (see
Section 5.0 “Applications Information”).
The threshold voltage is typically set at 4V, with a
tolerance of about ±5%. If the supply voltage falls below
this threshold, the MCP3905/06 will be held in a Reset
condition (equivalent to applying logic ‘0’ on the MCLR
pin). The typical hysteresis value is approximately
200 mV in order to prevent glitches on the power
supply.
Once a power-up event has occurred, an internal timer
prevents the part from outputting any pulse for
approximately 1s (with MCLK = 3.58 MHz), thereby
preventing potential metastability due to intermittent
resets caused by an unsettled regulated power supply.
Figure 4-3 illustrates the different conditions for a
power-up and a power-down event in the typical
conditions.
FIGURE 4-3: Power-on Reset Operation.
4.5 High-Pass Filters and Multiplier
The active (real) power value is extracted from the DC
instantaneous power. Therefore, any DC offset
component present on Channel 0 and Channel 1
affects the DC component of the instantaneous power
and will cause the real-power calculation to be
erroneous. In order to remove DC offset components
from the instantaneous power signal, a high-pass filter
has been introduced on each channel. Since the
high-pass filtering introduces phase delay, identical
high-pass filters are implemented on both channels.
The filters are clocked by the same digital signal,
ensuring a phase difference between the two channels
of less than one MCLK period. Under typical conditions
(MCLK = 3.58 MHz), this phase difference is less than
0.005°, with a line frequency of 50 Hz. The cut-off
frequency of the filter (4.45 Hz) has been chosen to
induce minimal gain error at typical line frequencies,
allowing sufficient settling time for the desired
applications. The two high-pass filters can be disabled
by applying a logic ‘0’ to the HPF pin.
FIGURE 4-4: HPF Magnitude Response
(MCLK = 3.58 MHz).
The multiplier output gives the product of the two high-
pass-filtered channels, corresponding to instantaneous
active (real) power. Multiplying two sine wave signals
by the same ω frequency gives a DC component and a
2ω component. The instantaneous power signal
contains the active (real) power of its DC component,
while also containing 2ω components coming from the
line frequency multiplication. These 2ω components
come for the line frequency (and its harmonics) and
must be removed in order to extract the real-power
information. This is accomplished using the low-pass
filter and DTF converter.
AV
DD
5V
4.2V
4V
0V
DEVICE
MODE
RESET
PROPER
OPERATION
RESET
NO
PULSE
OUT
Time
1s
-40
-35
-30
-25
-20
-15
-10
-5
0
0.1 1 10 100 1000
Frequency (Hz)
Normal Mode Rejection (dB)
MCP3905/06
DS21948E-page 18 © 2009 Microchip Technology Inc.
4.6 Low-Pass Filter and DTF
Converter
The MCP3905/06 low-pass filter is a first-order IIR filter
that extracts the active (real) power information
(DC component) from the instantaneous power signal.
The magnitude response of this filter is detailed in
Figure 4-5. Due to the fact that the instantaneous power
signal has harmonic content (coming from the 2ω
components of the inputs), and since the filter is not
ideal, there will be some ripple at the output of the
low-pass filter at the harmonics of the line frequency.
The cut-off frequency of the filter (8.9 Hz) has been
chosen to have sufficient rejection for commonly-used
line frequencies (50 Hz and 60 Hz). With a standard
input clock (MCLK = 3.58 MHz) and a 50 Hz line
frequency, the rejection of the 2ω component (100 Hz)
will be more than 20 dB. This equates to a 2ω
component containing 10 times less power than the
main DC component (i.e., the average active (real)
power).
FIGURE 4-5: LPF Magnitude Response
(MCLK = 3.58 MHz).
The output of the low-pass filter is accumulated in the
DTF converter. This accumulation is compared to a
different digital threshold for F
OUT0/1
and HF
OUT
,
representing a quantity of real energy measured by the
part. Every time the digital threshold on F
OUT0/1
or
HF
OUT
is crossed, the part will output a pulse
(See Section 4.7 “F
OUT0/1
and HF
OUT
Output
Frequencies”).
The equivalent quantity of real energy required to
output a pulse is much larger for the F
OUT0/1
outputs
than the HF
OUT
. This is such that the integration period
for the F
OUT0/1
outputs is much larger. This larger
integration period acts as another low-pass filter so that
the output ripple due to the 2ω components is minimal.
However, these components are not totally removed,
since realized low-pass filters are never ideal. This will
create a small jitter in the output frequency. Averaging
the output pulses with a counter or a Microcontroller
Unit (MCU) in the application will then remove the small
sinusoidal content of the output frequency and filter out
the remaining 2ω ripple.
HF
OUT
is intended to be used for calibration purposes
due to its instantaneous power content. The shorter
integration period of HF
OUT
demands that the 2ω
component be given more attention. Since a sinusoidal
signal average is zero, averaging the HF
OUT
signal in
steady-state conditions will give the proper real energy
value.
-40
-35
-30
-25
-20
-15
-10
-5
0
0.1 1 10 100 1000
Frequency (Hz)
Normal Mode Rejection (dB)

MCP3905LT-I/SS

Mfr. #:
Manufacturer:
Microchip Technology
Description:
Data Acquisition ADCs/DACs - Specialized Dynamic Range Energy Meter IC
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet