©2010-2015 by Murata Electronics N.A., Inc.
RX5500 (R) 4/15/15 Page 7 of 9
www.murata.com
Receiver Event Timing, 3.0 Vdc, -40 to +85 °C
Event Symbol Time
Min/
Max
Test Conditions Notes
Turn On to Receive t
PR
3*t
BBC
+ 15 ms max 10 ms supply voltage rise time time until receiver operational
Sleep to RX t
SR
3*t
BBC
max 1 µs CNTRL0/CNTROL 1 rise
times
time until receiver operational
RX to Sleep t
RS
10 µs max 1 µs CNTRL0/CNTROL 1 fall times time until receiver is in power-down mode
PRATE Interval t
PRI
0.1 to 5 µs range low data rate mode user selected mode
PWIDTH RFA1 t
PW1
0.55 to 1 µs range low data rate mode user selected mode
PWIDTH RFA2 t
PW2
1.1*t
PW1
range low data rate mode user selected mode
PRATE Cycle t
PRC
0.1 to 1.1 µs range high data rate mode user selected mode
PWIDTH High (RFA1 & RFA2) t
PWH
0.05 to 0.55 µs range high data rate mode user selected mode
LPF Group Delay t
FGD
1750/f
LPF
max t
FGD
in µs, f
LPF
in kHz user selected
LPF 3 dB Bandwidth f
LPF
1445/R
LPF
min f
LPF
in kHz, R
LPF
in kilohms user selected
BBOUT-CMPIN Time Constant t
BBC
0.064*C
BBO
min t
BBC
in µs, C
BBO
in pF user selected
Table 1
Pin Descriptions
Pin Name Description
1 GND1 GND1 is the RF ground pin. GND2 and GND3 should be connected to GND1 by short, low-inductance traces.
2 VCC1 VCC1 is the positive supply voltage pin for the receiver base-band circuitry. VCC1 must be bypassed by an RF capacitor,
which may be shared with VCC2. See the description of VCC2 (Pin 16) for additional information.
3RFA1
4 NC This pin should be left unconnected.
5 BBOUT BBOUT is the receiver base-band output pin. This pin drives the CMPIN pin through a coupling capacitor C
BBO
for internal
data slicer operation. The time constant t
BBC
for this connection is:
t
BBC
= 0.064*C
BBO
, where t
BBC
is in µs and C
BBO
is in pF
A ±10% ceramic capacitor should be used between BBOUT and CMPIN. The time constant can vary between t
BBC
and
1.8*t
BBC
with variations in supply voltage, temperature, etc. The optimum time constant in a given circumstance will depend
on the data rate, data run length, and other factors as discussed in the ASH Transceiver Designer’s Guide. A common criteria
is to set the time constant for no more than a 20% voltage droop during SP
MAX
. For this case:
C
BBO
= 70*SP
MAX
, where SP
MAX
is the maximum signal pulse width in µs and C
BBO
is in pF
The output from this pin can also be used to drive an external data recovery process (DSP, etc.). The nominal output imped-
ance of this pin is 1 K. When the receiver RF amplifiers are operating at a 50%-50% duty cycle, the BBOUT signal changes
about 10 mV/dB, with a peak-to-peak signal level of up to 685 mV. For lower duty cycles, the mV/dB slope and peak-to-peak
signal level are proportionately less. The signal at BBOUT is riding on a 1.1 Vdc value that varies somewhat with supply volt-
age and temperature, so it should be coupled through a capacitor to an external load. A load impedance of 50 K to 500 K in
parallel with no more than 10 pF is recommended. When an external data recovery process is used with AGC, BBOUT must
be coupled to the external data recovery process and CMPIN by separate series coupling capacitors. The AGC reset function
is driven by the signal applied to CMPIN. When the receiver is in power-down (sleep) mode, the output impedance of this pin
becomes very high, preserving the charge on the coupling capacitor.
6 CMPIN This pin is the input to the internal data slicers. It is driven from BBOUT through a coupling capacitor. The input impedance of
this pin is 70 K to 100 K.
7 RXDATA RXDATA is the receiver data output pin. This pin will drive a 10 pF, 500 K parallel load. The peak current available from this
pin increases with the receiver low-pass filter cutoff frequency. In the power-down (sleep) mode, this pin becomes high
impedance. If required, a 1000 K pull-up or pull-down resistor can be used to establish a definite logic state when this pin is
high impedance. If a pull-up resistor is used, the positive supply end should be connected to a voltage no greater than Vcc +
200 mV.
8 NC This pin may be left unconnected or may be grounded.
©2010-2015 by Murata Electronics N.A., Inc.
RX5500 (R) 4/15/15 Page 8 of 9
www.murata.com
9 LPFADJ This pin is the receiver low-pass filter bandwidth adjust. The filter bandwidth is set by a resistor R
LPF
between this pin and
ground. The resistor value can range from 330 K to 820 ohms, providing a filter 3 dB bandwidth f
LPF
from 4.5 kHz to 1.8 MHz.
The resistor value is determined by:
R
LPF
= 1445/ f
LPF
, where R
LPF
is in kilohms, and f
LPF
is in kHz
A ±5% resistor should be used to set the filter bandwidth. This will provide a 3 dB filter bandwidth between f
LPF
and 1.3* f
LPF
with variations in supply voltage, temperature, etc. The filter provides a three-pole, 0.05 degree equiripple phase response.
The peak drive current available from RXDATA increases in proportion to the filter bandwidth setting.
Pin Name Description
10 GND2 GND2 is an IC ground pin. It should be connected to GND1 by a short, low inductance trace.
11 RREF RREF is the external reference resistor pin. A 100 K reference resistor is connected between this pin and ground. A ±1%
resistor tolerance is recommended. It is important to keep the total capacitance between ground, Vcc and this node to less
than 5 pF to maintain current source stability. If THLD1 and/or THDL2 are connected to RREF through resistor values less
that 1.5 K, their node capacitance must be added to the RREF node capacitance and the total should not exceed 5 pF.
12 NC This pin should be left unconnected.
13 THLD1 The THLD1 pin sets the threshold for the standard data slicer (DS1) through a resistor R
TH1
to RREF. The threshold is
increased by increasing the resistor value. Connecting this pin directly to RREF provides zero threshold. The acceptable
range for the resistor is 0 to 100 K, providing a THLD1 range of 0 to 90 mV. The resistor value is given by:
R
TH1
= 1.11*V, where R
TH1
is in kilohms and the threshold V is in mV
A ±1% resistor tolerance is recommended for the THLD1 resistor.
14 PRATE The interval between the falling edge of an ON pulse to the first RF amplifier and the rising edge of the next ON pulse to the
first RF amplifier t
PRI
is set by a resistor R
PR
between this pin and ground. The interval t
PRI
can be adjusted between 0.1 and
5 µs with a resistor in the range of 51 K to 2000 K. The value of R
PR
is given by:
R
PR
= 404* t
PRI
+ 10.5, where t
PRI
is in µs, and R
PR
is in kilohms
A ±5% resistor value is recommended. When the PWIDTH pin is connected to Vcc through a 1 M resistor, the RF amplifiers
operate at a nominal 50%-50% duty cycle, facilitating high data rate operation. In this case, the period t
PRC
from start-to-start
of ON pulses to the first RF amplifier is controlled by the PRATE resistor over a range of 0.1 to 1.1 µs using a resistor of 11 K
to 220 K. In this case the value of R
PR
is given by:
R
PR
= 198* t
PRC
- 8.51, where t
PRC
is in µs and R
PR
is in kilohms
A ±5% resistor value should also be used in this case. Please refer to the ASH Transceiver Designer’s Guide for additional
amplifier duty cycle information. It is important to keep the total capacitance between ground, Vcc and this pin to less than 5
pF to maintain stability.
15 PWIDTH The PWIDTH pin sets the width of the ON pulse to the first RF amplifier t
PW1
with a resistor R
PW
to ground (the ON pulse
width to the second RF amplifier t
PW2
is set at 1.1 times the pulse width to the first RF amplifier). The ON pulse width t
PW1
can be adjusted between 0.55 and 1 µs with a resistor value in the range of 200 K to 390 K. The value of R
PW
is given by:
R
PW
= 404* t
PW1
- 18.6, where t
PW1
is in µs and R
PW
is in kilohms
A ±5% resistor value is recommended. When this pin is connected to Vcc through a 1 M resistor, the RF amplifiers operate at
a nominal 50%-50% duty cycle, facilitating high data rate operation. In this case, the RF amplifier ON times are controlled by
the PRATE resistor as described above. It is important to keep the total capacitance between ground, Vcc and this node to
less than 5 pF to maintain stability. When using the high data rate operation with the sleep mode, connect the 1 M resistor
between this pin and CNTRL1 (Pin 17), so this pin is low in the sleep mode.
16 VCC2 VCC2 is the positive supply voltage pin for the receiver RF section. This pin must be bypassed with an RF capacitor, which
may be shared with VCC1. VCC2 must also be bypassed with a 1 to 10 µF tantalum or electrolytic capacitor.
17 CNTRL1 CNTRL1 and CNTRL0 select the receiver modes. CNTRL1 and CNTRL0 both high place the unit in the receive mode.
CNTRL1 and CNTRL0 both low place the unit in the power-down (sleep) mode. CNTRL1 is a high-impedance input (CMOS
compatible). An input voltage of 0 to 300 mV is interpreted as a logic low. An input voltage of Vcc - 300 mV or greater is inter-
preted as a logic high. An input voltage greater than Vcc + 200 mV should not be applied to this pin. A logic high requires a
maximum source current of 40 µA. Sleep mode requires a maximum sink current of 1 µA. This pin must be held at a logic
level; it cannot be left unconnected.
18 CNTRL0 CNTRL0 is used with CNTRL1 to control the receiver modes. CNTRL0 is a high-impedance input (CMOS compatible). An
input voltage of 0 to 300 mV is interpreted as a logic low. An input voltage of Vcc - 300 mV or greater is interpreted as a logic
high. An input voltage greater than Vcc + 200 mV should not be applied to this pin. A logic high requires a maximum source
current of 40 µA. Sleep mode requires a maximum sink current of 1 µA. This pin must be held at a logic level; it cannot be left
unconnected.
19 GND3 GND3 is an IC ground pin. It should be connected to GND1 by a short, low inductance trace.
20 RFIO RFIO is the receiver RF input pin. This pin is connected directly to the SAW filter transducer. Antennas presenting an imped-
ance in the range of 35 to 72 ohms resistive can be satisfactorily matched to this pin with a series matching coil and a shunt
matching/ESD protection coil. Other antenna impedances can be matched using two or three components. For some imped-
ances, two inductors and a capacitor will be required. A DC path from RFIO to ground is required for ESD protection.
©2010-2015 by Murata Electronics N.A., Inc.
RX5500 (R) 4/15/15 Page 9 of 9
www.murata.com
0.000
0
.
0
0
0
.
1
4
0
.
2
7
0
.
4
1
0
.0775
.1025
.1175
.1575
.1975
.2375
.2775
.3175
.3575
.3825
.4600
.
1
9
7
5
.
1
7
2
5
.
2
1
2
5
.
2
3
7
5
Dimensions in inches
SM-20L PCB Pad Layout
Note: Specifications subject to change without notice.

RX5500

Mfr. #:
Manufacturer:
Murata Electronics
Description:
RF Receiver 2G ASH Receiver 433.92 MHZ 19.2kbps
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet