Obsolete Product(s) - Obsolete Product(s)
LIS3L06AL Mechanical and Electrical Specifications
7/17
2.3 Absolute maximum ratings
Stresses above those listed as “absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
2.4 Terminology
Sensitivity describes the gain of the sensor and can be determined by applying 1g
acceleration to it. As the sensor can measure DC accelerations this can be done easily by
pointing the axis of interest towards the center of the earth, note the output value, rotate the
sensor by 180 degrees (point to the sky) and note the output value again thus applying ±1g
acceleration to the sensor. Subtracting the larger output value from the smaller one and
dividing the result by 2 will give the actual sensitivity of the sensor. This value changes very
little over temperature (see sensitivity change vs. temperature) and also very little over time.
The Sensitivity Tolerance describes the range of Sensitivities of a large population of
sensors.
Zero-g level describes the actual output signal if there is no acceleration present. A sensor
in a steady state on a horizontal surface will measure 0g in X axis and 0g in Y axis. The
output is ideally for a 3.3V powered sensor Vdd/2 = 1650mV. A deviation from ideal 0-g level
(1650mV in this case) is called Zero-g offset. Offset of precise MEMS sensors is to some
extend a result of stress to the sensor and therefore the offset can slightly change after
mounting the sensor onto a printed circuit board or exposing it to extensive mechanical
stress. Offset changes little over temperature - see “Zero-g level change vs. temperature” -
the Zero-g level of an individual sensor is very stable over lifetime. The Zero-g level
tolerance describes the range of Zero-g levels of a population of sensors.
Table 4. Absolute maximum ratings
Symbol Ratings Maximum Value Unit
Vdd Supply voltage -0.3 to 7 V
Vin Input Voltage on Any Control pin (ST, FS) -0.3 to Vdd +0.3 V
A
POW
Acceleration (Any axis, Powered, Vdd=3.3V)
3000g for 0.5 ms
10000g for 0.1 ms
A
UNP
Acceleration (Any axis, Not powered)
3000g for 0.5 ms
10000g for 0.1 ms
T
STG
Storage Temperature Range -40 to +125 °C
ESD Electrostatic Discharge Protection
2kV HBM
200V MM
1500V CDM
This is a Mechanical Shock sensitive device, improper handling can cause permanent
damages to the part
This is an ESD sensitive device, improper handling can cause permanent damages to
the part
Obsolete Product(s) - Obsolete Product(s)
Mechanical and Electrical Specifications LIS3L06AL
8/17
Self Test allows to test the mechanical and electric part of the sensor, allowing the seismic
mass to be moved by means of an electrostatic test-force. The Self Test function is off when
the ST pin is connected to GND. When the ST pin is tied at Vdd an actuation force is applied
to the sensor, simulating a definite input acceleration. In this case the sensor outputs will
exhibit a voltage change in their DC levels which is related to the selected full scale and
depending on the Supply Voltage through the device sensitivity. When ST is activated, the
device output level is given by the algebraic sum of the signals produced by the acceleration
acting on the sensor and by the electrostatic test-force. If the output signals change within
the amplitude specified inside Table 2, than the sensor is working properly and the
parameters of the interface chip are within the defined specification.
Output impedance describes the resistor inside the output stage of each channel. This
resistor is part of a filter consisting of an external capacitor of at least 1nF and the internal
resistor. Due to the high resistor level only small, inexpensive external capacitors are
needed to generate low corner frequencies. When interfacing with an ADC it is important to
use high input impedance input circuitries to avoid measurement errors. Note that the
minimum load capacitance forms a corner frequency beyond the resonance frequency of
the sensor. For a flat frequency response a corner frequency well below the resonance
frequency is recommended. In general the smallest possible bandwidth for an particular
application should be chosen to get the best results.
Obsolete Product(s) - Obsolete Product(s)
LIS3L06AL Functionality
9/17
3 Functionality
The LIS3L06AL is a high performance, low-power, analog output 3-axis linear
accelerometer packaged in a LGA package. The complete device includes a sensing
element and an IC interface able to take the information from the sensing element and to
provide an analog signal to the external world.
3.1 Sensing element
A proprietary process is used to create a surface micro-machined accelerometer. The
technology allows to carry out suspended silicon structures which are attached to the
substrate in a few points called anchors and are free to move in the direction of the sensed
acceleration. To be compatible with the traditional packaging techniques a cap is placed on
top of the sensing element to avoid blocking the moving parts during the moulding phase of
the plastic encapsulation.
When an acceleration is applied to the sensor the proof mass displaces from its nominal
position, causing an imbalance in the capacitive half-bridge. This imbalance is measured
using charge integration in response to a voltage pulse applied to the sense capacitor.
At steady state the nominal value of the capacitors are few pF and when an acceleration is
applied the maximum variation of the capacitive load is up to 100fF.
3.2 IC Interface
In order to increase robustness and immunity against external disturbances the complete
signal processing chain uses a fully differential structure. The final stage converts the
differential signal into a single-ended one to be compatible with the external world.
The signals of the sensing element are multiplexed and fed into a low-noise capacitive
charge amplifier that implements a Correlated Double Sampling system (CDS) at its output
to cancel the offset and the 1/f noise. The output signal is de-multiplexed and transferred to
three different S&Hs, one for each channel and made available to the outside.
The low noise input amplifier operates at 200 kHz while the three S&Hs operate at a
sampling frequency of 66 kHz. This allows a large oversampling ratio, which leads to in-
band noise reduction and to an accurate output waveform.
All the analog parameters (Zero-g level, sensitivity and self-test) are ratiometric to the
supply voltage. Increasing or decreasing the supply voltage, the sensitivity and the offset will
increase or decrease almost linearly. The self test voltage change varies cubically with the
supply voltage.
3.3 Factory calibration
The IC interface is factory calibrated for sensitivity (So) and Zero-g level (Voff).
The trimming values are stored inside the device by a non volatile structure. Any time the
device is turned on, the trimming parameters are downloaded into the registers to be
employed during the normal operation. This allows the user to employ the device without
further calibration.

LIS3L06AL

Mfr. #:
Manufacturer:
STMicroelectronics
Description:
ACCELEROMETER 2-6G ANALOG 8LGA
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet