REV.
OP777/OP727/OP747
–4–
ABSOLUTE MAXIMUM RATINGS
1, 2
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 V
Input Voltage . . . . . . . . . . . . . . . . . . . . –V
S
– 5 V to +V
S
+ 5 V
Differential Input Voltage . . . . . . . . . . . . . . ± Supply Voltage
Output Short-Circuit Duration to GND . . . . . . . . . Indefinite
Storage Temperature Range
RM, R, RU Packages . . . . . . . . . . . . . . . . –65°C to +150°C
Operating Temperature Range
OP777/OP727/OP747 . . . . . . . . . . . . . . . –40°C to +85°C
Junction Temperature Range
RM, R, RU Packages . . . . . . . . . . . . . . . . –65°C to +150°C
Lead Temperature Range (Soldering, 60 sec) . . . . . . . 300°C
Electrostatic Discharge (Human Body Model) . . . . 2000 V max
Package Type
JA
3
JC
Unit
8-Lead MSOP (RM) 190 44 °C/W
8-Lead SOIC (R) 158 43 °C/W
8-Lead TSSOP (RU) 240 43 °C/W
14-Lead SOIC (R) 120 36 °C/W
14-Lead TSSOP (RU) 180 35 °C/W
NOTES
1
Absolute maximum ratings apply at 25°C, unless otherwise noted.
2
Stresses above those listed under Absolute Maximum Ratings may cause perma-
nent damage to the device. This is a stress rating only; functional operation of the
device at these or any other conditions above those listed in the operational
sections of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability.
3
θ
JA
is specified for worst-case conditions, i.e., θ
JA
is specified for device soldered in
circuit board for surface-mount packages.
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection. Although
the OP777/OP727/OP747 features proprietary ESD protection circuitry, permanent damage may
occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD
precautions are recommended to avoid performance degradation or loss of functionality.
WARNING!
ESD SENSITIVE DEVICE
D
REV.
–5–
OP777/OP727/OP747
Typical Performance Characteristics
OFFSET VOLTAGE –
V
220
60
0
100
8060 4020
0 20 40 60 80 100
200
80
40
20
160
120
140
100
180
V
SY
= 15V
V
CM
= 0V
T
A
= 25C
NUMBER OF AMPLIFIERS
TPC 1. OP777 Input Offset Voltage
Distribution
TCV
OS
V/C
QUANTITY – Amplifiers
200
100
0
1.0
0.2 0.4 0.6 0.8
180
140
60
40
V
SY
= 15V
V
CM
= 0V
T
A
= –40C TO +85C
80
160
120
20
0.1 0.3 0.5 0.7 0.9 1.1 1.2
TPC 4. OP727/OP747 Input Offset
Voltage Drift (TCV
OS
Distribution)
OFFSET VOLTAGE – V
300
0
120
80
040
80
400
200
100
600
NUMBER OF AMPLIFIERS
40
120
140
V
SY
= 5V
V
CM
= 2.5V
T
A
= 25C
500
TPC 7. OP727 Input Offset Voltage
Distribution
OFFSET VOLTAGE –
V
220
60
0
100
8060 4020
0 20 40 60 80 100
200
80
40
20
160
120
140
100
180
V
SY
= 5V
V
CM
= 2.5V
T
A
= 25C
NUMBER OF AMPLIFIERS
TPC 2. OP777 Input Offset Voltage
Distribution
V
QUANTITY – Amplifiers
600
400
0
300
200
V
SY
= 15V
V
CM
= 0V
T
A
= 25C
500
100
–120 –80 –40 0 40 80 120
TPC 5. OP747 Input Offset Voltage
Distribution
120
140
OFFSET VOLTAGE – V
300
0
80
040
80
40
120
400
200
100
500
600
V
SY
= 15V
V
CM
= 0V
T
A
= 25C
NUMBER OF AMPLIFIERS
TPC 8. OP727 Input Offset Voltage
Distribution
INPUT OFFSET DRIFT – V/C
NUMBER OF AMPLIFIERS
30
15
0
0
1.2
0.2 0.4 0.6 0.8 1.0
25
20
10
5
V
SY
= 15V
V
CM
= 0V
T
A
= 40C TO +85C
TPC 3. OP777 Input Offset Voltage
Drift Distribution
OFFSET VOLTAGE – V
NUMBER OF AMPLIFIERS
600
300
0
500
400
200
100
V
SY
= 5V
V
CM
= 2.5V
T
A
= 25C
–120 –80 –40 0 40 80 120
TPC 6. OP747 Input Offset Voltage
Distribution
INPUT BIAS CURRENT – nA
NUMBER OF AMPLIFIERS
30
15
0
3
8
4
5
6
7
25
20
10
5
V
SY
= 15V
V
CM
= 0V
T
A
= 25C
TPC 9. Input Bias Current
Distribution
D
REV.
OP777/OP727/OP747
–6–
LOAD CURRENT – mA
OUTPUT VOLTAGE – mV
10k
100
0
0.001 0.01 100
0.1 1 10
1.0
V
S
= 15V
T
A
= 25C
0.1
10
1k
SINK
SOURCE
TPC 10. Output Voltage to Supply
Rail vs. Load Current
TEMPERATURE – C
SUPPLY CURRENT – A
500
500
60 40
140
20
0 20 40 60 80 100 120
200
100
200
400
100
300
I
SY+
(V
SY
= 15V)
I
SY+
(V
SY
= 5V)
0
400
I
SY
(V
SY
= 5V)
I
SY
(V
SY
= 15V)
300
TPC 13. Supply Current vs.
Temperature
FREQUENCY – Hz
100
100k 100M
1k 10k 1M 10M
V
SY
= 5V
C
LOAD
= 0
R
LOAD
=
PHASE SHIFT – Degrees
45
90
135
180
225
270
0
OPEN-LOOP GAIN – dB
120
100
80
40
20
0
–20
–40
–60
140
60
TPC 16. Open Loop Gain and
Phase Shift vs. Frequency
LOAD CURRENT – mA
OUTPUT VOLTAGE – mV
10k
100
0
0.001 0.01 100
0.1 1 10
1.0
SOURCE
V
S
= 5V
T
A
= 25C
0.1
10
1k
SINK
TPC 11. Output Voltage to Supply
Rail vs. Load Current
SUPPLY VOLTAGE – V
SUPPLY CURRENT – A
350
0
0
535
10 15 20 25 30
300
200
150
100
50
250
T
A
= 25C
TPC 14. Supply Current vs. Supply
Voltage
CLOSED-LOOP GAIN – dB
60
50
40
40
30
20
10
0
10
20
30
FREQUENCY – Hz
1k 10k 100M
100k 1M 10M
V
SY
= 15V
C
LOAD
= 0
R
LOAD
= 2k
A
V
= 100
A
V
= 10
A
V
= +1
TPC 17. Closed Loop Gain vs.
Frequency
TEMPERATURE – C
INPUT BIAS CURRENT – nA
6
4
0
60 40 140
20 0 20 40 60 80 100 120
5
1
3
2
V
SY
= 15V
TPC 12. Input Bias Current vs.
Temperature
FREQUENCY – Hz
OPEN-LOOP GAIN – dB
120
100
80
40
20
0
–20
–40
–60
140
60
10 100k 100M
100 1k 10k 1M 10M
PHASE SHIFT – De
g
rees
45
90
135
180
225
270
0
V
SY
= 15V
C
LOAD
= 0
R
LOAD
=
TPC 15. Open Loop Gain and
Phase Shift vs. Frequency
FREQUENCY – Hz
1k 10k 100M100k 1M 10M
V
SY
= 5V
C
LOAD
= 0
R
LOAD
= 2k
A
V
= 100
A
V
= 10
A
V
= +1
CLOSED-LOOP GAIN – dB
60
50
40
40
30
20
10
0
10
20
30
TPC 18. Closed Loop Gain vs.
Frequency
D

OP777ARZ

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Precision Amplifiers Prec RRO SGL Supply 3-30V 100uV Max
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union