13
COMMERCIAL TEMPERATURE RANGE
IDT72V3683/72V3693/72V36103 3.3V CMOS SyncFIFO
TM
WITH
BUS-MATCHING 16,384 x 36, 32,768 x 36 and 65,536 x 36
SYNCHRONIZED FIFO FLAGS
Each FIFO is synchronized to its port clock through at least two flip-flop stages.
This is done to improve flag-signal reliability by reducing the probability of
metastable events when CLKA and CLKB operate asynchronously to one
another. FF/IR, and AF are synchronized to CLKA. EF/OR and AE are
synchronized to CLKB. Table 4 shows the relationship of each port flag to the
number of words stored in memory.
EMPTY/OUTPUT READY FLAGS (EF/OR)
These are dual purpose flags. In the FWFT mode, the Output Ready (OR)
function is selected. When the Output-Ready flag is HIGH, new data is present
in the FIFO output register. When the Output Ready flag is LOW, the previous
data word is present in the FIFO output register and attempted FIFO reads are
ignored.
In the IDT Standard mode, the Empty Flag (EF) function is selected. When
the Empty Flag is HIGH, data is available in the FIFO’s memory for reading to
the output register. When the Empty Flag is LOW, the previous data word is
present in the FIFO output register and attempted FIFO reads are ignored.
The Empty/Output Ready flag of a FIFO is synchronized to the port clock that
reads data from its array (CLKB). For both the FWFT and IDT Standard modes,
the FIFO read pointer is incremented each time a new word is clocked to its output
register. The state machine that controls an Output Ready flag monitors a write
pointer and read pointer comparator that indicates when the FIFO memory status
is empty, empty+1, or empty+2.
In FWFT mode, from the time a word is written to a FIFO, it can be shifted to
the FIFO output register in a minimum of three cycles of the Output Ready flag
synchronizing clock. Therefore, an Output Ready flag is LOW if a word in
memory is the next data to be sent to the FlFO output register and three cycles
of the port Clock that reads data from the FIFO have not elapsed since the time
the word was written. The Output Ready flag of the FIFO remains LOW until the
third LOW-to-HIGH transition of the synchronizing clock occurs, simultaneously
forcing the Output Ready flag HIGH and shifting the word to the FIFO output
register.
In IDT Standard mode, from the time a word is written to a FIFO, the Empty
Flag will indicate the presence of data available for reading in a minimum of two
cycles of the Empty Flag synchronizing clock. Therefore, an Empty Flag is LOW
if a word in memory is the next data to be sent to the FlFO output register and
two cycles of the port Clock that reads data from the FIFO have not elapsed since
the time the word was written. The Empty Flag of the FIFO remains LOW until
the second LOW-to-HIGH transition of the synchronizing clock occurs, forcing
the Empty Flag HIGH; only then can data be read.
A LOW-to-HIGH transition on an Empty/Output Ready flag synchronizing
clock begins the first synchronization cycle of a write if the clock transition occurs
at time t
SKEW1 or greater after the write. Otherwise, the subsequent clock cycle
can be the first synchronization cycle (see Figures 11 and 12).
FULL/INPUT READY FLAGS (FF/IR)
This is a dual purpose flag. In FWFT mode, the Input Ready (IR) function
is selected. In IDT Standard mode, the Full Flag (FF) function is selected. For
both timing modes, when the Full/Input Ready flag is HIGH, a memory location
is free in the FIFO to receive new data. No memory locations are free when
the Full/Input Ready flag is LOW and attempted writes to the FIFO are ignored.
The Full/Input Ready flag of a FlFO is synchronized to the port clock that writes
data to its array (CLKA). For both FWFT and IDT Standard modes, each time
a word is written to a FIFO, its write pointer is incremented. The state machine
that controls a Full/Input Ready flag monitors a write pointer and read pointer
comparator that indicates when the FlFO memory status is full, full-1, or full-2.
From the time a word is read from a FIFO, its previous memory location is ready
to be written to in a minimum of two cycles of the Full/Input Ready flag
synchronizing clock. Therefore, an Full/Input Ready flag is LOW if less than
two cycles of the Full/Input Ready flag synchronizing clock have elapsed since
the next memory write location has been read. The second LOW-to-HIGH
transition on the Full/Input Ready flag synchronizing clock after the read sets
the Full/Input Ready flag HIGH.
A LOW-to-HIGH transition on a Full/Input Ready flag synchronizing clock
begins the first synchronization cycle of a read if the clock transition occurs at
time tSKEW1 or greater after the read. Otherwise, the subsequent clock cycle
can be the first synchronization cycle (see Figures 13 and 14).
ALMOST-EMPTY FLAG (AE)
The Almost-Empty flag of a FIFO is synchronized to the port clock that reads
data from its array (CLKB). The state machine that controls an Almost-Empty
flag monitors a write pointer and read pointer comparator that indicates when
the FIFO memory status is almost-empty, almost-empty+1, or almost-empty+2.
The Almost-Empty state is defined by the contents of register X. These registers
are loaded with preset values during a FIFO reset, programmed from Port A,
or programmed serially (see Almost-Empty flag and Almost-Full flag offset
programming section). An Almost-Empty flag is LOW when its FIFO contains
X or less words and is HIGH when its FIFO contains (X+1) or more words. Note
that a data word present in the FIFO output register has been read from memory.
Two LOW-to-HIGH transitions of the Almost-Empty flag synchronizing clock
are required after a FIFO write for its Almost-Empty flag to reflect the new level
of fill. Therefore, the Almost-Empty flag of a FIFO containing (X+1) or more
words remains LOW if two cycles of its synchronizing clock have not elapsed
since the write that filled the memory to the (X+1) level. An Almost-Empty flag
is set HIGH by the second LOW-to-HIGH transition of its synchronizing clock
after the FIFO write that fills memory to the (X+1) level. A LOW-to-HIGH
transition of an Almost-Empty flag synchronizing clock begins the first synchro-
nization cycle if it occurs at time tSKEW2 or greater after the write that fills the FIFO
to (X+1) words. Otherwise, the subsequent synchronizing clock cycle may be
the first synchronization cycle. (See Figure 15).
ALMOST-FULL FLAG (AF)
The Almost-Full flag of a FIFO is synchronized to the port clock that writes
data to its array. The state machine that controls an Almost-Full flag monitors
a write pointer and read pointer comparator that indicates when the FIFO
memory status is almost-full, almost-full-1, or almost-full-2. The Almost-Full state
is defined by the contents of register Y. These registers are loaded with preset
values during a FlFO reset or, programmed from Port A, or programmed
serially (see Almost-Empty flag and Almost-Full flag offset programming
section). An Almost-Full flag is LOW when the number of words in its FIFO is
greater than or equal to (16,384-Y), (32,768-Y), or (65,536-Y) for the
IDT72V3683, IDT72V3693, or IDT72V36103 respectively. An Almost-Full
flag is HIGH when the number of words in its FIFO is less than or equal to
[16,384-(Y+1)], [32,768-(Y+1)], or [65,536-(Y+1)] for the IDT72V3683,
IDT72V3693, or IDT72V36103 respectively. Note that a data word present
in the FIFO output register has been read from memory.
Two LOW-to-HIGH transitions of the Almost-Full flag synchronizing clock are
required after a FIFO read for its Almost-Full flag to reflect the new level of fill.
Therefore, the Almost-Full flag of a FIFO containing [16,384/32,768/65,536-
(Y+1)] or less words remains LOW if two cycles of its synchronizing clock have
not elapsed since the read that reduced the number of words in memory to
[16,384/32,768/65,536-(Y+1)]. An Almost-Full flag is set HIGH by the second
LOW-to-HIGH transition of its synchronizing clock after the FIFO read that
reduces the number of words in memory to [16,384/32,768/65,536-(Y+1)]. A
LOW-to-HIGH transition of an Almost-Full flag synchronizing clock begins the
14
COMMERCIAL TEMPERATURE RANGE
IDT72V3683/72V3693/72V36103 3.3V CMOS SyncFIFO
TM
WITH
BUS-MATCHING 16,384 x 36, 32,768 x 36 and 65,536 x 36
first synchronization cycle if it occurs at time tSKEW2 or greater after the read that
reduces the number of words in memory to [16,384/32,768/65,536-(Y+1)].
Otherwise, the subsequent synchronizing clock cycle may be the first synchro-
nization cycle (see Figure 16).
MAILBOX REGISTERS
Two 36-bit bypass registers are on the IDT72V3683/72V3693/72V36103
to pass command and control information between Port A and Port B without
putting it in queue. The Mailbox select (MBA, MBB) inputs choose between
a mail register and a FIFO for a port data transfer operation. The usable width
of both the Mail1 and Mail2 Registers matches the selected bus size for Port B.
A LOW-to-HIGH transition on CLKA writes data to the Mail1 Register when
a Port A write is selected by CSA, W/RA, and ENA with MBA HIGH. If the
selected Port B bus size is 36 bits, the usable width of the Mail1 Register employs
data lines A0-A35. If the selected Port B bus size is 18 bits, then the usable width
of the Mail1 Register employs data lines A0-A17. (In this case, A18-A35 are
don’t care inputs.) If the selected Port B bus size is 9 bits, then the usable width
of the Mail1 Register employs data lines A0-A8. (In this case, A9-A35 are don’t
care inputs.)
A LOW-to-HIGH transition on CLKB writes B0-B35 data to the Mail2 Register
when a Port B write is selected by CSB, W/RB, and ENB with MBB HIGH. If
the selected Port B bus size is 36 bits, the usable width of the Mail2 employs
data lines B0-B35. If the selected Port B bus size is 18 bits, then the usable width
of the Mail2 Register employs data lines B0-B17. (In this case, B18-B35 are
don’t care inputs.) If the selected Port B bus size is 9 bits, then the usable width
of the Mail2 Register employs data lines B0-B8. (In this case, B9-B35 are don’t
care inputs.)
Writing data to a mail register sets its corresponding flag (MBF1 or MBF2)
LOW. Attempted writes to a mail register are ignored while the mail flag is LOW.
When data outputs of a port are active, the data on the bus comes from the
FIFO output register when the port Mailbox select input is LOW and from the
mail register when the port Mailbox select input is HIGH.
The Mail1 Register Flag (MBF1) is set HIGH by a LOW-to-HIGH transition
on CLKB when a Port B read is selected by CSB, W/RB, and ENB with MBB
HIGH. For a 36-bit bus size, 36 bits of mailbox data are placed on B0-B35.
For an 18-bit bus size, 18 bits of mailbox data are placed on B0-B17. (In this
case, B18-B35 are indeterminate.) For a 9-bit bus size, 9 bits of mailbox data
are placed on B0-B8. (In this case, B9-B35 are indeterminate.)
The Mail2 Register Flag (MBF2) is set HIGH by a LOW-to-HIGH transition
on CLKA when a Port A read is selected by CSA, W/RA, and ENA with MBA
HIGH.
For a 36-bit bus size, 36 bits of mailbox data are placed on A0-A35. For
an 18-bit bus size, 18 bits of mailbox data are placed on A0-A17. (In this case,
A18-A35 are indeterminate.) For a 9-bit bus size, 9 bits of mailbox data are
placed on A0-A8. (In this case, A9-A35 are indeterminate.)
The data in a mail register remains intact after it is read and changes only when
new data is written to the register. The Endian select feature has no effect on
mailbox data. For mail register and mail register flag timing diagrams, see Figure
17 and 18.
BUS SIZING
The Port B bus can be configured in a 36-bit long word, 18-bit word, or 9-
bit byte format for data read from the FIFO. The levels applied to the Port B Bus
Size select (SIZE) and the Bus-Match select (BM) determine the Port B bus size.
These levels should be static throughout FIFO operation. Both bus size
selections are implemented at the completion of Reset, by the time the Full/Input
Ready flag is set HIGH, as shown in Figure 2.
Two different methods for sequencing data transfer are available for Port B
when the bus size selection is either byte-or word-size. They are referred to
as Big-Endian (most significant byte first) and Little-Endian (least significant byte
first). The level applied to the Big-Endian select (BE) input during the LOW-to-
HIGH transition of RS1 selects the endian method that will be active during FIFO
operation. BE is a don’t care input when the bus size selected for Port B is long
word. The endian method is implemented at the completion of Reset, by the time
the Full/Input Ready flag is set HIGH, as shown in Figure 2.
Only 36-bit long word data is written to or read from the FIFO memory on the
IDT72V3683/72V3693/72V36103. Bus-matching operations are done after
data is read from the FIFO RAM. These bus-matching operations are not
available when transferring data via mailbox registers. Furthermore, both the
word- and byte-size bus selections limit the width of the data bus that can be used
for mail register operations. In this case, only those byte lanes belonging to the
selected word- or byte-size bus can carry mailbox data. The remaining data
outputs will be indeterminate. The remaining data inputs will be don’t care inputs.
For example, when a word-size bus is selected, then mailbox data can be
transmitted only between A0-A17 and B0-B17. When a byte-size bus is
selected, then mailbox data can be transmitted only between A0-A8 and B0-
B8. (See Figures 17 and 18).
BUS-MATCHING FIFO READS
Data is read from the FIFO RAM in 36-bit long word increments. If a long
word bus size is implemented, the entire long word immediately shifts to the FIFO
output register. If byte or word size is implemented on Port B, only the first one
or two bytes appear on the selected portion of the FIFO output register, with the
rest of the long word stored in auxiliary registers. In this case, subsequent FIFO
reads output the rest of the long word to the FIFO output register in the order
shown by Figure 2.
When reading data from FIFO in byte or word format, the unused B0-B35
outputs are indeterminate.
15
COMMERCIAL TEMPERATURE RANGE
IDT72V3683/72V3693/72V36103 3.3V CMOS SyncFIFO
TM
WITH
BUS-MATCHING 16,384 x 36, 32,768 x 36 and 65,536 x 36
Figure 2. Bus sizing
A35 A27 A26 A18 A17 A9 A8 A0
B35 B27 B26 B18 B17 B9 B8 B0
A
A
A
D
A
C
B
B
B
C
B
D
C
C
C
A
D
D
D
B
B35 B27 B26 B18 B17 B9 B8 B0
(a) LONG WORD SIZE
(b) WORD SIZE
BIG-ENDIAN
(c) WORD SIZE LITTLE-ENDIAN
(d) BYTE SIZE
BIG-ENDIAN
Write to FIFO
Read from FIFO
1st: Read from FIFO
BE BM SIZE
H H L
L H L
H H H
X L X
BYTE ORDER ON PORT A:
B35 B27 B26 B18 B17 B9 B8 B0
BE BM SIZE
BE BM SIZE
BE BM SIZE
2nd: Read from FIFO
3rd: Read from FIFO
4th: Read from FIFO
B35 B27 B26 B18 B17 B9 B8 B0
B35 B27 B26 B18 B17 B9 B8 B0
B35 B27 B26 B18 B17 B9 B8 B0
1st: Read from FIFO
1st: Read from FIFO
2nd: Read from FIFO
2nd: Read from FIFO
D
C
(e) BYTE SIZE LITTLE-ENDIAN
1st: Read from FIFO
A
B
BE BM SIZE
L H H
2nd: Read from FIFO
3rd: Read from FIFO
4th: Read from FIFO
B35 B27 B26 B18 B17 B9 B8 B0
4678 drw 04
BYTE ORDER ON PORT B:
B35 B27 B26 B18 B17 B9 B8 B0
B35 B27 B26 B18 B17 B9 B8 B0
B35 B27 B26 B18 B17 B9 B8 B0
B35 B27 B26 B18 B17 B9 B8 B0
B35 B27 B26 B18 B17 B9 B8 B0
B35 B27 B26 B18 B17 B9 B8 B0

IDT72V36103L10PF

Mfr. #:
Manufacturer:
Description:
IC FIFO 131X18 10NS 128QFP
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union