Data Sheet ADN2814
Rev. C | Page 15 of 28
At medium jitter frequencies, the gain and tuning range of the
VCO are not large enough to track input jitter. In this case, the
VCO control voltage becomes large and saturates, and the VCO
frequency dwells at one extreme of its tuning range or at the
other. The size of the VCO tuning range, therefore, has only a
small effect on the jitter accommodation. The delay-locked loop
control voltage is now larger, and therefore the phase shifter
takes on the burden of tracking the input jitter. The phase
shifter range, in UI, can be seen as a broad plateau on the jitter
tolerance curve. The phase shifter has a minimum range of
2 UI at all data rates.
The gain of the loop integrator is small for high jitter
frequencies; therefore, larger phase differences are needed to
make the loop control voltage large enough to tune the range of
the phase shifter. Large phase errors at high jitter frequencies
cannot be tolerated. In this region, the gain of the integrator
determines the jitter accommodation. Because the gain of the
loop integrator declines linearly with frequency, jitter accom-
modation is lower with higher jitter frequency. At the highest
frequencies, the loop gain is very small, and little tuning of the
phase shifter can be expected. In this case, jitter accommodation is
determined by the eye opening of the input data, the static
phase error, and the residual loop jitter generation. The jitter
accommodation is roughly 0.5 UI in this region. The corner
frequency between the declining slope and the flat region is
the closed loop bandwidth of the delay-locked loop, which is
roughly 1.0 MHz at 622 Mb/s.
ADN2814 Data Sheet
Rev. C | Page 16 of 28
FUNCTIONAL DESCRIPTION
FREQUENCY ACQUISITION
The ADN2814 acquires frequency from the data over a range of
data frequencies from 10 Mb/s to 675 Mb/s. The lock detector
circuit compares the frequency of the VCO and the frequency
of the incoming data. When these frequencies differ by more
than 1000 ppm, LOL is asserted. This initiates a frequency
acquisition cycle. The VCO frequency is reset to the bottom of
its range, which is 10 MHz. The frequency detector then
compares this VCO frequency and the incoming data frequency
and increments the VCO frequency, if necessary. Initially, the
VCO frequency is incremented in large steps to aid fast acquisi-
tion. As the VCO frequency approaches the data frequency, the
step size is reduced until the VCO frequency is within 250 ppm
of the data frequency, at which point LOL is deasserted.
Once LOL is deasserted, the frequency-locked loop is turned
off. The PLL/DLL pulls in the VCO frequency the rest of the
way until the VCO frequency equals the data frequency.
The frequency loop requires a single external capacitor between
CF1 and CF2, Pin 14 and Pin 15. A 0.47 μF ± 20%, X7R ceramic
chip capacitor with < 10 nA leakage current is recommended.
Leakage current of the capacitor can be calculated by dividing
the maximum voltage across the 0.47 μF capacitor, ~3 V, by the
insulation resistance of the capacitor. The insulation resistance
of the 0.47 μF capacitor should be greater than 300 MΩ.
LIMITING AMPLIFIER
The limiting amplifier has differential inputs (PIN/NIN), which
are internally terminated with 50 Ω to an on-chip voltage
reference (VREF = 2.5 V typically). The inputs are typically
ac-coupled externally, although dc coupling is possible as long
as the input common-mode voltage remains above 2.5 V (see
Figure 27 to Figure 29 in the Applications Information section).
Input offset is factory trimmed to achieve better than 3.3 mV
typical sensitivity with minimal drift. The limiting amplifier can
be driven differentially or single-ended.
SLICE ADJUST
The quantizer slicing level can be offset by ±100 mV to mitigate
the effect of amplified spontaneous emission (ASE) noise or
duty cycle distortion by applying a differential voltage input of
up to ±0.95 V to SLICEP/SLICEN inputs. If no adjustment of
the slice level is needed, SLICEP/SLICEN should be tied to
VEE. The gain of the slice adjustment is ~0.11 V/V.
LOSS-OF-SIGNAL (LOS) DETECTOR
The receiver front-end LOS detector circuit detects when the
input signal level has fallen below a user-adjustable threshold.
The threshold is set with a single external resistor from Pin 9,
THRADJ, to VEE. The LOS comparator trip point vs. the
resistor value is illustrated in Figure 6. If the input level to the
ADN2814 drops below the programmed LOS threshold, the
output of the LOS detector, LOS Pin 22, is asserted to a Logic 1.
The LOS detector’s response time is ~500 ns by design, but is
dominated by the RC time constant in ac-coupled applications.
The LOS pin defaults to active high. However, by setting Bit
CTRLC[2] to 1, the LOS pin is configured as active low.
There is typically 6 dB of electrical hysteresis designed into the
LOS detector to prevent chatter on the LOS pin. If the input
level drops below the programmed LOS threshold causing the
LOS pin to assert, the LOS pin is not deasserted until the input
level has increased to 6 dB (2×) above the LOS threshold (see
Figure 19).
HYSTERESIS
LOS OUTPUT
INPUT LEVEL
LOS THRESHOLD
t
INPUT VOLTAGE (V
DIFF
)
04949-019
Figure 19. LOS Detector Hysteresis
The LOS detector and the SLICE level adjust can be used
simultaneously on the ADN2814. This means that any offset
added to the input signal by the SLICE adjust pins does not
affect the LOS detectors measurement of the absolute input
level.
Data Sheet ADN2814
Rev. C | Page 17 of 28
LOCK DETECTOR OPERATION
The lock detector on the ADN2814 has three modes of
operation: normal mode, REFCLK mode, and static LOL mode.
Normal Mode
In normal mode, the ADN2814 is a continuous rate CDR that
locks onto any data rate from 10 Mb/s to 675 Mb/s without the
use of a reference clock as an acquisition aid. In this mode, the
lock detector monitors the frequency difference between the
VCO and the input data frequency and deasserts the loss of lock
signal, which appears on Pin 16, LOL, when the VCO is within
250 ppm of the data frequency. This enables the D/PLL, which
pulls the VCO frequency in the remaining amount and acquires
phase lock. Once locked, if the input frequency error exceeds
1000 ppm (0.1%), the loss-of-lock signal is reasserted and
control returns to the frequency loop, which begins a new
frequency acquisition starting at the lowest point in the VCO
operating range, 10 MHz. The LOL pin remains asserted until
the VCO locks onto a valid input data stream to within
250 ppm frequency error. This hysteresis is shown in Figure 20.
LOL
0–250 250 1000 f
VCO
ERROR
(ppm)
–1000
1
04949-020
Figure 20. Transfer Function of LOL
LOL Detector Operation Using a Reference Clock
In REFCLK mode, a reference clock is used as an acquisition aid
to lock the ADN2814 VCO. Lock-to-reference mode is enabled
by setting CTRLA[0] to 1. The user also needs to write to the
CTRLA[7:6] and CTRLA[5:2] bits to set the reference
frequency range and the divide ratio of the data rate with
respect to the reference frequency. For more details, see the
Reference Clock (Optional) section. In this mode, the lock
detector monitors the difference in frequency between the
divided down VCO and the divided down reference clock. The
loss-of-lock signal, which appears on Pin 16, LOL, is deasserted
when the VCO is within 250 ppm of the desired frequency. This
enables the D/PLL, which pulls the VCO frequency in the
remaining amount with respect to the input data and acquires
phase lock. Once locked, if the input frequency error exceeds
1000 ppm (0.1%), the loss-of-lock signal is reasserted and
control returns to the frequency loop, which reacquires with
respect to the reference clock. The LOL pin remains asserted
until the VCO frequency is within 250 ppm of the desired
frequency. This hysteresis is shown in Figure 20.
Static LOL Mode
The ADN2814 implements a static LOL feature, which indicates
if a loss-of-lock condition has ever occurred and remains
asserted, even if the ADN2814 regains lock, until the static LOL
bit is manually reset. The I
2
C register bit, MISC[4], is the static
LOL bit. If there is ever an occurrence of a loss-of-lock condition,
this bit is internally asserted to logic high. The MISC[4] bit
remains high even after the ADN2814 has reacquired lock to a
new data rate. This bit can be reset by writing a 1 followed by 0
to I
2
C Register Bit CTRLB[6]. Once reset, the MISC[4] bit
remains deasserted until another loss-of-lock condition occurs.
Writing a 1 to I
2
C Register Bit CTRLB[7] causes the LOL pin,
Pin 16, to become a static LOL indicator. In this mode, the LOL
pin mirrors the contents of the MISC[4] bit and has the
functionality described in the previous paragraph. The CTRLB[7]
bit defaults to 0. In this mode, the LOL pin operates in the
normal operating mode, that is, it is asserted only when the
ADN2814 is in acquisition mode and deasserts when the
ADN2814 has reacquired lock.
HARMONIC DETECTOR
The ADN2814 provides a harmonic detector, which detects
whether or not the input data has changed to a lower harmonic
of the data rate that the VCO is currently locked onto. For
example, if the input data instantaneously changes from OC-12,
622.08 Mb/s to an OC-3, 155.52 Mb/s bit stream, this could be
perceived as a valid OC-12 bit stream, because the OC-3 data
pattern is exactly 4× slower than the OC-12 pattern. Therefore,
if the change in data rate is instantaneous, a 101 pattern at OC-3
would be perceived by the ADN2814 as a 111100001111 pattern
at OC-12. If the change to a lower harmonic is instantaneous, a
typical CDR could remain locked at the higher data rate.
The ADN2814 implements a harmonic detector that automati-
cally identifies whether or not the input data has switched to a
lower harmonic of the data rate that the VCO is currently
locked onto. When a harmonic is identified, the LOL pin is
asserted and a new frequency acquisition is initiated. The
ADN2814 automatically locks onto the new data rate, and the
LOL pin is deasserted.
However, the harmonic detector does not detect higher
harmonics of the data rate. If the input data rate switches to a
higher harmonic of the data rate, then the VCO is currently
locked onto, the VCO loses lock, the LOL pin is asserted, and a
new frequency acquisition is initiated. The ADN2814
automatically locks onto the new data rate.

ADN2814ACPZ-500RL7

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Timers & Support Products 12 Mbps - 1.3G ADN2812 Derivative IC.
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet