DS1086
Spread-Spectrum EconOscillator
4 _______________________________________________________________________________________
AC ELECTRICAL CHARACTERISTICS
(V
CC
= 5V ±5%, T
A
= 0°C to +70°C.)
PARAMETER SYMBOL CONDITION MIN TYP MAX UNITS
Frequency Stable After Prescaler
Change
1 Period
Frequency Stable After DAC or
Offset Change
(Note 9) 0.2 1 ms
Power-Up Time t
p
or
+ t
stab
(Note 10) 0.1 0.5 ms
Enable of OUT After Exiting
Power-Down Mode
t
stab
500 µs
OUT High-Z After Entering
Power-Down Mode
t
pdn
0.1 ms
Load Capacitance C
L
(Note 11) 15 50 pF
Output Duty Cycle (OUT) 40 60 %
PDN Rise/Fall Time s
AC ELECTRICAL CHARACTERISTICS: 2-WIRE INTERFACE
(V
CC
= 5V ±5%, T
A
= 0°C to +70°C.)
PARAMETER SYMBOL CONDITION MIN TYP MAX UNITS
Fast mode 400
SCL Clock Frequency f
SCL
Standard mode
(Note 12)
100
kHz
Fast mode 1.3
Bus Free Time Between a STOP
and START Condition
t
BUF
Standard mode
(Note 12)
4.7
µs
Fast mode 0.6
Hold Time (Repeated) START
Condition
t
HD:STA
Standard mode
(Notes 12, 13)
4.0
µs
Fast mode 1.3
LOW Period of SCL t
LOW
Standard mode
(Note 12)
4.7
µs
Fast mode 0.6
HIGH Period of SCL t
HIGH
Standard mode
(Note 12)
4.0
µs
Fast mode 0.6
Setup Time for a Repeated
START
t
SU:STA
Standard mode
(Note 12)
4.7
µs
Fast mode
Data Hold Time t
HD:DAT
Standard mode
(Notes 12, 14, 15) 0 0.9 µs
Fast mode 100
Data Setup Time t
SU:DAT
Standard mode
(Note 12)
250
ns
Fast mode 20 + 0.1C
B
300
Rise Time of Both SDA and SCL
Signals
t
R
Standard mode
(Note 16)
20 + 0.1C
B
1000
ns
Fast mode 20 + 0.1C
B
300
Fall Time of Both SDA and SCL
Signals
t
F
Standard mode
(Note 16)
20 + 0.1C
B
1000
ns
DS1086
Spread-Spectrum EconOscillator
_______________________________________________________________________________________ 5
AC ELECTRICAL CHARACTERISTICS: 2-WIRE INTERFACE (continued)
(V
CC
= 5V ±5%, T
A
= 0°C to +70°C.)
PARAMETER SYMBOL CONDITION MIN TYP MAX UNITS
Fast mode 0.6
Setup Time for STOP t
SU:STO
Standard mode 4.0
µs
Capacitive Load for Each Bus
Line
C
B
(Note 16) 400 pF
NV Write-Cycle Time t
WR
10 ms
Input Capacitance C
I
5pF
Note 1: All voltages are referenced to ground.
Note 2: DAC and OFFSET register settings must be configured to maintain the master oscillator frequency within this range.
Correct operation of the device is not guaranteed if these limits are exceeded.
Note 3: This is the absolute accuracy of the master oscillator frequency at the default settings.
Note 4: This is the change that is observed in master oscillator frequency with changes in voltage from nominal voltage at
T
A
= +25°C.
Note 5: This is the percentage frequency change from the +25°C frequency due to temperature at V
CC
= 5V. The maximum tem-
perature change varies with the master oscillator frequency setting. The minimum occurs at the default master oscillator
frequency (f
default
). The maximum occurs at the extremes of the master oscillator frequency range (66MHz or 133MHz)
(see Figure 2).
Note 6: The dither deviation of the master oscillator frequency is unidirectional and lower than the undithered frequency.
Note 7: The integral nonlinearity of the frequency adjust DAC is a measure of the deviation from a straight line drawn between the
two endpoints of a range. The error is in percentage of the span.
Note 8: This is true when the prescaler = 1.
Note 9: Frequency settles faster for small changes in value. During a change, the frequency transitions smoothly from the original
value to the new value.
Note 10: This indicates the time elapsed between power-up and the output becoming active. An on-chip delay is intentionally
introduced to allow the oscillator to stabilize. t
stab
is equivalent to approximately 512 master clock cycles and therefore
depends on the programmed clock frequency.
Note 11: Output voltage swings can be impaired at high frequencies combined with high output loading.
Note 12: A fast-mode device can be used in a standard-mode system, but the requirement t
SU:DAT
> 250ns must then be met.
This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does
stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line at least t
R MAX
+ t
SU:DAT
=
1000ns + 250ns = 1250ns before the SCL line is released.
Note 13: After this period, the first clock pulse is generated.
Note 14: A device must internally provide a hold time of at least 300ns for the SDA signal (referred to as the V
IH MIN
of the SCL sig-
nal) in order to bridge the undefined region of the falling edge of SCL.
Note 15: The maximum t
HD:DAT
need only be met if the device does not stretch the LOW period (t
LOW
) of the SCL signal.
Note 16: C
B
—total capacitance of one bus line, timing referenced to 0.9 x V
CC
and 0.1 x V
CC
.
Note 17: Typical frequency shift due to aging is ±0.5%. Aging stressing includes Level 1 moisture reflow preconditioning (24hr
+125°C bake, 168hr 85°C/85%RH moisture soak, and 3 solder reflow passes +240 +0/-5°C peak) followed by 1000hr
max V
CC
biased 125°C HTOL, 1000 temperature cycles at -55°C to +125°C, 96hr 130°C/85%RH/5.5V HAST and 168hr
121°C/2 ATM Steam/Unbiased Autoclave.
Typical Operating Characteristics
(V
CC
= 5.0V, T
A
= 25°C, unless otherwise noted)
DS1086
Spread-Spectrum EconOscillator
6 _______________________________________________________________________________________
SUPPLY CURRENT vs. TEMPERATURE
DS1086 toc01
TEMPERATURE (°C)
CURRENT (mA)
605030 402010
11
12
13
14
15
16
17
18
19
20
10
070
SUPPLY CURRENT vs. VOLTAGE
DS1086 toc02
VOLTAGE (V)
CURRENT (mA)
5.155.054.954.854.75 5.25
11
12
13
14
15
16
17
18
19
20
10
SUPPLY CURRENT vs. PRESCALER
DS1086 toc03
PRESCALER
CURRENT (mA)
200150100500250
11
12
13
14
15
16
17
18
19
20
10
5.25V
5.0V
4.75V
SUPPLY CURRENT vs. PRESCALER
DS1086 toc04
PRESCALER
CURRENT (mA)
200150100500250
11
12
13
14
15
16
17
18
19
20
10
70°C, 25°C, AND 0°C

DS1086Z-450+T

Mfr. #:
Manufacturer:
Maxim Integrated
Description:
Programmable Oscillators 5V Spread-Spectrum EconOscillator
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union