MC68340FE16VE

4 MC68340 PRODUCT INFORMATION MOTOROLA
CPU32
68020-BASED
PROCESSOR
TWO-CHANNEL
SERIAL
I/O
TWO-CHANNEL DMA
CONTROLLER
TIMER
MODULE
IMB
RxDB
RxDA
TxDB
TxDA
CTSB
CTSA
SCLK
X2
X1
BKPT/DSCLK
FREEZE
IPIPE/DS0
IFETCH/DS1
DREQ2
DREQ1
DACK2
DACK1
DONE2
DONE1
TGATE1
TGATE2
TIN1
TIN2
TOUT1
TOUT2
PORT A
A31/PORT A7/IACK7
A30/PORT A6/IACK6
A29/PORT A5/IACK5
A28/PORT A4/IACK4
A27/PORT A3/IACK3
A26/PORT A2/IACK2
A25/PORT A1/IACK1
A24/PORT A0
PORT B
IRQ7/PORT B7
IRQ6/PORT B6
IRQ5/PORT B5
IRQ3/PORT B3
CS3/IRQ4/PORT B4
CS2/IRQ2/PORT B2
CS1/IRQ1/PORT B1
CS0/AVEC
MODCK/PORT B0
EXTAL
XTAL
CLKOUT
EXTERNAL
BUS
INTERFACE
BUS
ARBITRATION
CLOCK
SYSTEM
INTEGRATION
MODULE
(SIM40)
TEST
TCK
TMS
TDI
TDO
A23–A0
FC3–FC0
D15–D0
RESET
BERR
HALT
AS
DS
R/W
SIZ1
SIZ0
DSACK1
DSACK0
BR
BG
BGACK
RMC
OUTPUT
PORT
TxRDYA/OP6
RxRDYA/FFULLA/OP4
RTSB/OP1
RTSA/OP0
TIMER
MODULE
XFC
Figure 2. MC68340 Detailed Block Diagram
Frees
cale Semiconductor,
I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
MOTOROLA MC68340 PRODUCT INFORMATION 5
CENTRAL PROCESSOR UNIT
The CPU32 is a powerful central processor that supervises system functions, makes decisions, manipulates
data, and directs I/O. A special debugging mode simplifies processor emulation during system debug.
CPU32
The CPU32 is an M68000 family processor specially designed for use as a 32-bit core processor and for
operation over the intermodule bus (IMB). Designers used the MC68020 as a model and included advances
of the later M68000 family processors, resulting in an instruction execution performance of 4 MIPS (VAX-
equivalent) at 25.16 MHz.
The powerful and flexible M68000 architecture is the basis of the CPU32. MC68000 (including the
MC68HC000 and the MC68EC000) and MC68010 user programs will run unmodified on the CPU32. The
programmer can use any of the eight 32-bit data registers for fast manipulation of data and any of the eight
32-bit address registers for indexing data in memory. The CPU32 can operate on data types of single bits,
binary-coded decimal (BCD) digits, and 8, 16, and 32 bits. Peripherals and data in memory can reside
anywhere in the 4-Gbyte linear address space. A supervisor operating mode protects system-level
resources from the more restricted user mode, allowing a true virtual environment to be developed.
Flexible instructions for data movement, arithmetic functions, logical operations, shifts and rotates, bit set
and clear, conditional and unconditional program branches, and overall system control are supported,
including a fast 32 × 32 multiply and 32-bit conditional branches. Instructions, such as table lookup and
interpolate and low power stop, support specific requirements of embedded control applications. Many
addressing modes complement these instructions, including predecrement and postincrement, which allow
simple stack and queue maintenance and scaled indexed for efficient table accesses. Data types and
addressing modes are supported orthogonally by all data operations and with all appropriate addressing
modes. Position-independent code is easily written.
The CPU32 is specially optimized to run with the MC68340's 16-bit data bus. Most instructions execute in
one-half the number of clocks compared to the original MC68000, yielding an overall 1.6 times the
performance of the same-speed MC68000 and measuring 10,045 Dhrystones/sec @ 25.16 MHz
(6,742 Dhrystones/sec @ 16.78 MHz).
Like all M68000 family processors, the CPU32 recognizes interrupts of seven different priority levels and
allows the peripheral to vector the processor to the desired service routine. Internal trap exceptions ensure
proper instruction execution with good addresses and data, allow operating system intervention in special
situations, and permit instruction tracing. Hardware signals can either terminate or rerun bad memory
accesses before instructions process data incorrectly.
The CPU32 offers the programmer full 32-bit data processing performance with complete M68000
compatibility, yet with more compact code than is available with RISC processors. The CPU32 is identical in
all CPU32-based M68300 family products.
BACKGROUND DEBUG MODE
A special operating mode is available in the CPU32 in which normal instruction execution is suspended
while special on-chip microcode performs the functions of a debugger. Commands are received over a
dedicated, high-speed, full-duplex serial interface. Commands allow the manual reading or writing of CPU32
registers, reading or writing of external memory locations, and diversion to user-specified patch code. This
background debug mode permits a much simpler emulation environment while leaving the processor chip in
the target system, running its own debugging operations.
Frees
cale Semiconductor,
I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
6 MC68340 PRODUCT INFORMATION MOTOROLA
ON-CHIP PERIPHERALS
To improve total system throughput and reduce part count, board size, and cost of system implementation,
the M68300 family integrates on-chip, intelligent peripheral modules and typical glue logic. These functions
on the MC68340 include the SIM40, a DMA controller, a serial module, and two timers.
The processor communicates with these modules over the on-chip intermodule bus (IMB). This backbone of
the chip is similar to traditional external buses with address, data, clock, interrupt, arbitration, and
handshake signals. Because bus masters (like the CPU32 and DMA), peripherals, and the SIM40 are all on
the chip, the IMB ensures that communication between these modules is fully synchronized and that
arbitration and interrupts can be handled in parallel with data transfers, greatly improving system
performance. Internal accesses across the IMB may be monitored from outside of the chip, if desired.
Each module operates independently. No direct connections between peripheral modules are made inside
the chip; however, external connections could, for instance, link a serial output to a DMA control line.
Modules and their registers are accessed in the memory map of the CPU32 (and DMA) for easy access by
general M68000 instructions and are relocatable. Each module may be assigned its own interrupt level,
response vector, and arbitration priority. Since each module is a self-contained design and adheres to the
IMB interface specifications, the modules may appear on other M68300 family products, retaining the
investment in the software drivers for the module.
SYSTEM INTEGRATION MODULE
The MC68340 SIM40 provides the external bus interface for both the CPU32 and the DMA. It also
eliminates much of the glue logic that typically supports the microprocessor and its interface with the
peripheral and memory system. The SIM40 provides programmable circuits to perform address decoding
and chip selects, wait-state insertion, interrupt handling, clock generation, bus arbitration, watchdog timing,
discrete I/O, and power-on reset timing. A boundary scan test capability is also provided.
External Bus Interface
The external bus interface (EBI) handles the transfer of information between the internal CPU32 or DMA
controller and memory, peripherals, or other processing elements in the external address space. Based on
the MC68030 bus, the external bus provides up to 32 address lines and 16 data lines. Address extensions
identify each bus cycle as CPU32 or DMA initiated, supervisor or user privilege level, and instruction or data
access. The data bus allows dynamic sizing for 8- or 16-bit bus accesses (plus 32 bits for DMA).
Synchronous transfers for the CPU32 or the DMA can be made in as little as two clock cycles.
Asynchronous transfers allow the memory system to signal the CPU32 or DMA when the transfer is
complete and to note the number of bits in the transfer. An external master can arbitrate for the bus using a
three-line handshaking interface.
System Configuration And Protection
The M68000 family of processors is designed with the concept of providing maximum system safeguards.
System configuration and various monitors and timers are provided in the MC68340. Power-on reset
circuitry is a part of the SIM40. A bus monitor ensures that the system does not lock up when there is no
response to a memory access. The bus fault monitor can reset the processor when a catastrophic bus
failure occurs. Spurious interrupts are detected and handled appropriately. A software watchdog can pull the
processor out of an infinite loop. An interrupt can be sent to the CPU32 with programmable regularity for
DRAM refresh, time-of-day clock, task switching, etc.
Frees
cale Semiconductor,
I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...

MC68340FE16VE

Mfr. #:
Manufacturer:
NXP / Freescale
Description:
Microprocessors - MPU 32B MPU DMA TIMER
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet