MC68340FE16VE

MOTOROLA MC68340 PRODUCT INFORMATION 7
Clock Synthesizer
The clock synthesizer generates the clock signals used by all internal operations as well as a clock output
used by external devices. The clock synthesizer can operate with an inexpensive 32768-Hz watch crystal or
an external oscillator for reference, using an internal phase-locked loop and voltage-controlled oscillator. At
any time, software can select clock frequencies from 131 kHz to 16.78 MHz or 25.16 MHz, favoring either
low power consumption or high performance. Alternately, an external clock can drive the clock signal directly
at the operating frequency. With its fully static HCMOS design, it is possible to completely stop the system
clock without losing the contents of the internal registers.
Chip Select And Wait State Generation
Four programmable chip selects provide signals to enable external memory and peripheral circuits,
providing all handshaking and timing signals with up to 175-ns access times with a 25-MHz system clock
(265 ns @ 16.78 MHz). Each chip select signal has an associated base address and an address mask that
determine the addressing characteristics of that chip select. Address space and write protection can be
selected for each. The block size can be selected from 256 bytes up to 4 Gbytes in increments of 2
n
.
Accesses can be preselected for either 8- or 16-bit transfers. Fast synchronous termination or up to three
wait states can be programmed, whether or not the chip select signals are used. External handshakes can
also signal the end of a bus transfer. A system can boot from reset out of 8-bit-wide memory, if desired.
Interrupt Handling
Seven input signals are provided to trigger an external interrupt, one for each of the seven priority levels
supported. Seven separate outputs can indicate the priority level of the interrupt being serviced. An input
can direct the processor to a default service routine, if desired. Interrupts at each priority level can be
preprogrammed to go to the default service routine. For maximum flexibility, interrupts can be vectored to
the correct service routine by the interrupting device.
Discrete I/O Pins
When not used for other functions, 16 pins can be programmed as discrete input or output lines.
Additionally, in other peripheral modules, pins for otherwise unused functions can often be used for general
input/output.
IEEE 1149.1 Test
To aid in system diagnostics, the MC68340 includes dedicated user-accessible test logic that is fully
compliant with the IEEE 1149.1 standard for boundary scan testability, often referred to as JTAG (Joint Test
Action Group).
DIRECT MEMORY ACCESS MODULE
The most distinguishing MC68340 characteristic is the high-speed 32-bit DMA controller, used to quickly
move large blocks of data between internal peripherals, external peripherals, or memory, without processor
intervention. The DMA module consists of two, independent, programmable channels. Each channel has
separate request, acknowledge, and done signals. Each channel can operate in a single-address (flyby) or a
dual-address mode.
In single-address mode, only one (the source or the destination) address is provided, and a peripheral
device such as a serial communications controller receives or supplies the data. An external request must
start a single-address transfer. In this mode, each channel supports 32 bits of address and 8, 16, or 32 bits
of data.
Frees
cale Semiconductor,
I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
8 MC68340 PRODUCT INFORMATION MOTOROLA
In dual-address mode, two bus transfers occur, one from a source device and the other to a destination
device. Dual-address transfers can be started by either an internal or external request. In this mode, each
channel supports 32 bits of address and 8 or 16 bits of data (32 bits require external logic). The source and
destination port size can be selected independently; when they are different, the data will be packed or
unpacked. An 8-bit disk interface can be read twice before the concatenated 16-bit result is passed into
memory.
Byte, word, and long-word counts up to 32 bits can be transferred. All addresses and transfer counters are
32 bits. Addresses increment or remain constant, as programmed. The DMA channels support two external
request modes, burst transfer and cycle steal. Internal requests can be programmed to occupy 25, 50, 75, or
100 percent of the data bus bandwidth. Interrupts can be programmed to postpone DMA completion.
The DMA module can sustain a transfer rate of 12.5 Mbytes/sec in dual-address mode and nearly 50
Mbytes/sec in single-address mode @ 25.16 MHz (8.4 and 33.3 Mbytes/sec @ 16.78 MHz, respectively).
The DMA controller arbitrates with the CPU32 for the bus in parallel with existing bus cycles and is fully
synchronized with the CPU32, eliminating all delays normally associated with bus arbitration by allowing
DMA bus cycles to butt seamlessly with CPU bus cycles.
SERIAL MODULE
Most digital systems use serial I/O to communicate with host computers, operator terminals, or remote
devices. The MC68340 contains a two-channel, full-duplex USART. An on-chip baud rate generator
provides standard baud rates up to 76.8k baud independently to each channel's receiver and transmitter.
The module is functionally equivalent to the MC68681/MC2681 DUART.
Each communication channel is completely independent. Data formats can be 5, 6, 7, or 8 bits with even,
odd, or no parity and stop bits up to 2 in 1/16 increments. Four-byte receive buffers and two-byte transmit
buffers minimize CPU service calls. A wide variety of error detection and maskable interrupt capability is
provided on each channel. Full-duplex, autoecho loopback, local loopback, and remote loopback modes can
be selected. Multidrop applications are supported.
A 3.6864-MHz crystal drives the baud rate generators. Each transmit and receive channel can be
programmed for a different baud rate, or an external 1× and 16× clock input can be selected. Full modem
support is provided with separate request-to-send (RTS) and clear-to-send (CTS) signals for each channel.
One channel also provides service request signals. The two serial ports can sustain rates of 9.8 Mbps with a
25-MHz system clock in 1× mode, 612 kbps in 16× mode (6.5 Mbps and 410 kbps @ 16.78 MHz).
TIMER MODULES
Timers and counters are used in a system to monitor elapsed time, generate waveforms, measure signals,
keep time-of-day clocks, initiate DRAM refresh cycles, count events, and provide “time slices” to ensure that
no task dominates the activity of the processor. A counter that counts clock pulses makes a timer, which is
most useful when it causes certain actions to occur in response to reaching desired counts.
The MC68340 has two, identical, versatile, on-chip counter/timers as well as a simple timer in the SIM40.
These general-purpose counter/timers can be used for precisely timed events without the errors to which
software-based counters and timers are susceptible—e.g., errors caused by dynamic memory refreshing,
DMA cycle steals, and interrupt servicing. The programmable timer operating modes are input capture,
output compare, square-wave generation, variable duty-cycle square-wave generation, variable-width
single-shot pulse generation, event counting, period measurement, and pulse-width measurement.
Each timer consists of a 16-bit countdown counter with an 8-bit countdown prescaler for a composite 24-bit
resolution. The two timers can be externally cascaded for a maximum count width of 48 bits. The
Frees
cale Semiconductor,
I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
MOTOROLA MC68340 PRODUCT INFORMATION 9
counter/timer can be clocked by the internal system clock generated by the SIM40 (÷2) or by an external
clock input. Either the processor or external stimuli can trigger the starting and stopping of the counter.
When a counter reaches a predetermined value, either an external output signal can be driven, or an
interrupt can be made to the CPU32. The finest resolution of the timer is 80 ns with a 25-MHz system clock
(125 ns @ 16.78 MHz).
POWER CONSUMPTION MANAGEMENT
The MC68340 is very power efficient due to its advanced 0.8-µ HCMOS process technology and its static
logic design. The resulting power consumption is typically 500 mW in full operation @ 16.78 MHz (750 mW
@ 25 MHz)—far less than the comparable discrete component implementation the MC68340 can replace.
For applications employing reduced voltage operation, selection of the MC68340V, which requires only a
3.3-V power supply, reduces current consumption by 40–60% in all modes of operation (as well as reducing
noise emissions).
The MC68340 has many additional methods of dynamically controlling power consumption during operation.
The frequency of operation can be lowered under software control to reduce current consumption when
performance is less critical. Idle internal peripheral modules can be turned off to save power (5–10% each).
Running a special low power stop (LPSTOP) instruction shuts down the active circuits in the CPU and
peripheral modules, halting instruction execution. Power consumption in this standby mode is reduced to
about 300 µW. Processing and power consumption can be resumed by resetting the part or by generating
an interrupt which can be done with the SIM40's periodic interrupt timer.
PHYSICAL
The MC68340 is available as 0–16.78 MHz and 0–25.16 MHz, 0°C to +70°C and -40°C to +85°C, and 5.0 V
±5% and 3.3 V ±0.3 supply voltages (reduced frequencies at 3.3 V). Thirty-two power and ground leads
minimize ground bounce and ensure proper isolation of different sections of the chip, including the clock
oscillator. A 144 pins are used for signals and power. The MC68340 is available in a gull-wing ceramic quad
flat pack (CQFP) with 0.65 mm lead spacing or a 15 × 15 plastic pin grid array (PPGA) with 0.1-in pin
spacing.
COMPACT DISC-INTERACTIVE
The MC68340 was designed to meet the needs of many markets, including compact disc-interactive (CD-I).
CD-I is an emerging standard for a publishing medium that will bring multimedia to a broad general
audience—the consumer. CD-I players combine television and stereo systems as output devices, with
interactive control using a TV remote-control-like device to provide a multimedia experience selected from
software “titles” contained in compressed form on standard compact discs.
The highly integrated MC68340 is ideal as the central processor for CD-I players. It provides the M68000
microprocessor code compatibility and DMA functions required by the
CD-I Green Book
specification as well
as many other useful on-chip functions for a very cost-effective solution. The extra demands of full-motion
video CD-I systems make the best use of the MC68340 high performance. The MC68340 is CD-I compliant
and has been CD-I qualified. With its low voltage operation, the MC68340V is the only practical choice for
portable CD-I.
Frees
cale Semiconductor,
I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...

MC68340FE16VE

Mfr. #:
Manufacturer:
NXP / Freescale
Description:
Microprocessors - MPU 32B MPU DMA TIMER
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet