LTC3857-1
16
38571fc
APPLICATIONS INFORMATION
Low Value Resistor Current Sensing
A typical sensing circuit using a discrete resistor is shown
in Figure 4a. R
SENSE
is chosen based on the required
output current.
The current comparator has a maximum threshold
V
SENSE(MAX)
. The current comparator threshold voltage
sets the peak of the inductor current, yielding a maximum
average output current, I
MAX
, equal to the peak value less
half the peak-to-peak ripple current, ∆I
L
. To calculate the
sense resistor value, use the equation:
R
SENSE
=
V
SENSE(MAX)
I
MAX
+
ΔI
L
2
When using the controller in very low dropout conditions,
the maximum output current level will be reduced due to
the internal compensation required to meet stability cri-
terion for buck regulators operating at greater than 50%
duty factor. A curve is provided in the Typical Performance
Characteristics section to estimate this reduction in peak
output current depending upon the operating duty factor.
Inductor DCR Sensing
For applications requiring the highest possible efficiency
at high load currents, the LTC3857-1 is capable of sensing
the voltage drop across the inductor DCR, as shown in
Figure 4b. The DCR of the inductor represents the small
amount of DC resistance of the copper wire, which can be
less than 1m for todays low value, high current inductors.
In a high current application requiring such an inductor,
power loss through a sense resistor would cost several
points of efficiency compared to inductor DCR sensing.
If the external R1||R2 • C1 time constant is chosen to
be exactly equal to the L/DCR time constant, the voltage
drop across the external capacitor is equal to the drop
across the inductor DCR multiplied by R2/(R1 + R2). R2
scales the voltage across the sense terminals for appli-
cations where the DCR is greater than the target sense
resistor value. To properly dimension the external filter
components, the DCR of the inductor must be known.
It can be measured using a good RLC meter, but the
DCR tolerance is not always the same and varies with
temperature; consult the manufacturers’ data sheets for
detailed information.
Using the inductor ripple current value from the Induc-
tor Value Calculation section, the target sense resistor
value is:
R
SENSE(EQUIV)
=
V
SENSE(MAX)
I
MAX
+
ΔI
L
2
To ensure that the application will deliver full load current
over the full operating temperature range, choose the
minimum value for the maximum current sense threshold
voltage (V
SENSE(MAX)
).
Next, determine the DCR of the inductor. When provided,
use the manufacturers maximum value, usually given at
20°C. Increase this value to account for the temperature
coefficient of copper resistance, which is approximately
0.4%/°C. A conservative value for T
L(MAX)
is 100°C.
To scale the maximum inductor DCR to the desired sense
resistor (R
D
) value, use the divider ratio:
R
D
=
R
SENSE(EQUIV)
DCR
MAX
atT
L(MAX)
C1 is usually selected to be in the range of 0.1µF to 0.47µF.
This forces R1|| R2 to around 2k, reducing error that might
have been caused by the SENSE
+
pin’s ±1µA current.
LTC3857-1
17
38571fc
APPLICATIONS INFORMATION
The equivalent resistance R1|| R2 is scaled to the room
temperature inductance and maximum DCR:
R1|| R2 =
L
DCR at 20°C
()
•C1
The sense resistor values are:
R1=
R1|| R2
R
D
; R2 =
R1 R
D
1–R
D
The maximum power loss in R1 is related to duty cycle,
and will occur in continuous mode at the maximum input
voltage:
P
LOSS
R1=
V
IN(MAX)
–V
OUT
()
•V
OUT
R1
Ensure that R1 has a power rating higher than this value.
If high efficiency is necessary at light loads, consider this
power loss when deciding whether to use DCR sensing or
sense resistors. Light load power loss can be modestly
higher with a DCR network than with a sense resistor, due
to the extra switching losses incurred through R1. However,
DCR sensing eliminates a sense resistor, reduces conduc-
tion losses and provides higher efficiency at heavy loads.
Peak efficiency is about the same with either method.
Inductor Value Calculation
The operating frequency and inductor selection are inter-
related in that higher operating frequencies allow the use
of smaller inductor and capacitor values. So why would
anyone ever choose to operate at lower frequencies with
larger components? The answer is efficiency. A higher
frequency generally results in lower efficiency because
of MOSFET gate charge losses. In addition to this basic
trade-off, the effect of inductor value on ripple current and
low current operation must also be considered.
The inductor value has a direct effect on ripple current. The
inductor ripple current, ∆I
L
, decreases with higher induc-
tance or higher frequency and increases with higher V
IN
:
ΔI
L
=
1
f
()
L
()
V
OUT
1–
V
OUT
V
IN
Accepting larger values of ∆I
L
allows the use of low in-
ductances, but results in higher output voltage ripple and
greater core losses. A reasonable starting point for setting
ripple current is ∆I
L
=0.3(I
MAX
). The maximum ∆I
L
occurs
at the maximum input voltage.
The inductor value also has secondary effects. The tran-
sition to Burst Mode operation begins when the average
inductor current required results in a peak current below
15% of the current limit determined by R
SENSE
. Lower
inductor values (higher ∆I
L
) will cause this to occur at
lower load currents, which can cause a dip in efficiency in
the upper range of low current operation. In Burst Mode
operation, lower inductance values will cause the burst
frequency to decrease.
Inductor Core Selection
Once the value for L is known, the type of inductor must
be selected. High efficiency converters generally cannot
afford the core loss found in low cost powdered iron cores,
forcing the use of more expensive ferrite or molypermalloy
cores. Actual core loss is independent of core size for a
fixed inductor value, but it is very dependent on inductance
value selected. As inductance increases, core losses go
down. Unfortunately, increased inductance requires more
turns of wire and therefore copper losses will increase.
Ferrite designs have very low core loss and are preferred
for high switching frequencies, so design goals can con-
centrate on copper loss and preventing saturation. Ferrite
core material saturates hard, which means that induc-
tance collapses abruptly when the peak design current is
exceeded. This results in an abrupt increase in inductor
ripple current and consequent output voltage ripple. Do
not allow the core to saturate!
Power MOSFET and Schottky Diode
(Optional) Selection
Two external power MOSFETs must be selected for each
controller in the LTC3857-1: one N-channel MOSFET for
the top (main) switch, and one N-channel MOSFET for the
bottom (synchronous) switch.
LTC3857-1
18
38571fc
APPLICATIONS INFORMATION
The peak-to-peak drive levels are set by the INTV
CC
voltage.
This voltage is typically 5.1V during start-up (see EXTV
CC
Pin Connection). Consequently, logic-level threshold
MOSFETs must be used in most applications. The only
exception is if low input voltage is expected (V
IN
< 4V);
then, sub-logic level threshold MOSFETs (V
GS(TH)
< 3V)
should be used. Pay close attention to the BV
DSS
speci-
fication for the MOSFETs as well; many of the logic-level
MOSFETs are limited to 30V or less.
Selection criteria for the power MOSFETs include the on-
resistance, R
DS(ON)
, Miller capacitance, C
MILLER
, input
voltage and maximum output current. Miller capacitance,
C
MILLER
, can be approximated from the gate charge curve
usually provided on the MOSFET manufacturers’ data
sheet. C
MILLER
is equal to the increase in gate charge
along the horizontal axis while the curve is approximately
flat divided by the specified change in V
DS
. This result is
then multiplied by the ratio of the application applied V
DS
to the Gate charge curve specified V
DS
. When the IC is
operating in continuous mode the duty cycles for the top
and bottom MOSFETs are given by:
Main Switch Duty Cycle =
V
OUT
V
IN
Synchronous Switch Duty Cycle =
V
IN
V
OUT
V
IN
The MOSFET power dissipations at maximum output
current are given by:
P
MAIN
=
V
OUT
V
IN
I
MAX
()
2
1
()
R
DS(ON)
+
V
IN
()
2
I
MAX
2
R
DR
()
C
MILLER
()
1
V
INTVCC
–V
THMIN
+
1
V
THMIN
f
()
P
SYNC
=
V
IN
–V
OUT
V
IN
I
MAX
()
2
1
()
R
DS(ON)
where δ is the temperature dependency of R
DS(ON)
and
R
DR
(approximately 2) is the effective driver resistance
at the MOSFETs Miller threshold voltage. V
THMIN
is the
typical MOSFET minimum threshold voltage.
Both MOSFETs have I
2
R losses while the topside N-channel
equation includes an additional term for transition losses,
which are highest at high input voltages. For V
IN
< 20V
the high current efficiency generally improves with larger
MOSFETs, while for V
IN
> 20V the transition losses rapidly
increase to the point that the use of a higher R
DS(ON)
device
with lower C
MILLER
actually provides higher efficiency. The
synchronous MOSFET losses are greatest at high input
voltage when the top switch duty factor is low or during
a short-circuit when the synchronous switch is on close
to 100% of the period.
The term (1+ δ) is generally given for a MOSFET in the
form of a normalized R
DS(ON)
vs Temperature curve, but
δ = 0.005/°C can be used as an approximation for low
voltage MOSFETs.
The optional Schottky diodes D1 and D2 shown in
Figure 11 conduct during the dead-time between the
conduction of the two power MOSFETs. This prevents
the body diode of the bottom MOSFET from turning on,
storing charge during the dead-time and requiring a
reverse recovery period that could cost as much as 3%
in efficiency at high V
IN
. A 1A to 3A Schottky is generally
a good compromise for both regions of operation due
to the relatively small average current. Larger diodes
result in additional transition losses due to their larger
junction capacitance.
C
IN
and C
OUT
Selection
The selection of C
IN
is simplified by the 2-phase architec-
ture and its impact on the worst-case RMS current drawn
through the input network (battery/fuse/capacitor). It can be
shown that the worst-case capacitor RMS current occurs
when only one controller is operating. The controller with
the highest (V
OUT
)(I
OUT
) product needs to be used in the
formula shown in Equation 1 to determine the maximum

LTC3857IGN-1#PBF

Mfr. #:
Manufacturer:
Analog Devices / Linear Technology
Description:
Switching Voltage Regulators Low IQ, Dual, 2-Phase Synchronous Step Down Controller
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union