LTC4301IMS8#PBF

4
LTC4301
4301fb
UU
U
PI FU CTIO S
CS (Pin 1): The connection sense pin is a 1.4V threshold
digital input pin. For normal operation CS is grounded.
Driving CS above the 1.4V threshold isolates SDAIN from
SDAOUT and SCLIN from SCLOUT and asserts READY
low.
SCLOUT (Pin 2): Serial Clock Output. Connect this pin to
the SCL bus on the card.
SCLIN (Pin 3): Serial Clock Input. Connect this pin to SCL
on the bus backplane.
GND (Pin 4): Ground. Connect this pin to a ground plane
for best results.
READY (Pin 5): The READY pin is an open drain N-channel
MOSFET output which pulls down when CS is high or
when the start-up sequence described in the Operation
section has not been completed. READY goes high when
CS is low and a start-up is complete.
SDAIN (Pin 6): Serial Data Input. Connect this pin to the
SDA bus on the backplane.
SDAOUT (Pin 7): Serial Data Output. Connect this pin to
the SDA bus on the card.
V
CC
(Pin 8): Main Input Supply. Place a bypass capacitor
of at least 0.01µF close to V
CC
for best results.
Exposed Pad (Pin 9): Exposed pad may be left open or
connected to device ground.
BLOCK DIAGRA
W
CONNECT
PRECHARGE
CONNECT
PRECHARGE
CONNECT
CONNECT
1
R2
200k
R1
200k
R3
200k
R4
200k
PRECHARGE
LOGIC
PRECHARGE
CONNECT
95µs
DELAY
UVLO
1.4V
CS
1.8V
3
SCLIN
6
SDAIN
1.8V
CONNECT
CONNECT
7
SDAOUT
8
V
CC
2
SCLOUT
READY
5
GND
4301 BD
4
LTC4301 Supply Independent 2-Wire Bus Buffer
5
LTC4301
4301fb
OPERATIO
U
Start-Up
When the LTC4301 first receives power on its V
CC
pin,
either during power-up or live insertion, it starts in an
undervoltage lockout (UVLO) state, ignoring any activity
on the SDA or SCL pins until V
CC
rises above 2.5V (typical).
This is to ensure that the part does not try to function until
it has enough voltage to do so.
During this time, the 1V precharge circuitry is active and
forces 1V through 200k nominal resistors to the SDA and
SCL pins. Because the I/O card is being plugged into a live
backplane, the voltage on the backplane SDA and SCL
busses may be anywhere between 0V and V
CC
. Precharging
the SCL and SDA pins to 1V minimizes the worst-case
voltage differential these pins will see at the moment of
connection, therefore minimizing the amount of distur-
bance caused by the I/O card.
Once the LTC4301 comes out of UVLO, it assumes that
SDAIN and SCLIN have been inserted into a live system
and that SDAOUT and SCLOUT are being powered up at
the same time as itself. Therefore, it looks for either a stop
bit or bus idle condition on the backplane side to indicate
the completion of a data transaction. When either one
occurs, the part also verifies that both the SDAOUT and
SCLOUT voltages are high. When all of these conditions
are met, the input-to-output connection circuitry is acti-
vated, joining the SDA and SCL busses on the I/O card with
those on the backplane.
Connection Circuitry
Once the connection circuitry is activated, the functional-
ity of the SDAIN and SDAOUT pins is identical. A low
forced on either pin at any time results in both pin voltages
being low. For proper operation, logic low input voltages
should be no higher than 0.4V with respect to the ground
pin voltage of the LTC4301. SDAIN and SDAOUT enter a
logic high state only when all devices on both SDAIN and
SDAOUT release high. The same is true for SCLIN and
SCLOUT. This important feature ensures that clock stretch-
ing, clock synchronization, arbitration and the acknowl-
edge protocol always work, regardless of how the devices
in the system are tied to the LTC4301.
Another key feature of the connection circuitry is that it
provides bidirectional buffering, keeping the backplane
and card capacitances isolated. Because of this isolation,
the waveforms on the backplane busses look slightly
different than the corresponding card bus waveforms as
described here.
Input-to-Output Offset Voltage
When a logic low voltage, V
LOW1
, is driven on any of the
LTC4301’s data or clock pins, the LTC4301 regulates the
voltage on the other side of the device (call it V
LOW2
) at a
slightly higher voltage, as directed by the following
equation:
V
LOW2
= V
LOW1
+ 75mV + (V
CC
/R) • 70 (typical)
where R is the bus pull-up resistance in ohms. For ex-
ample, if a device is forcing SDAOUT to 10mV where V
CC
= 3.3V and the pull-up resistor R on SDAIN is 10k, then the
voltage on SDAIN = 10mV + 75mV + (3.3/10000) • 70 =
108mV (typical). See the Typical Performance Character-
istics section for curves showing the offset voltage as a
function of V
CC
and R.
Propagation Delays
During a rising edge, the rise time on each side is deter-
mined by the bus pull-up resistor and the equivalent
capacitance on the line. If the pull-up resistors are the
same, a difference in rise time occurs which is directly
proportional to the difference in capacitance between
the two sides. This effect is displayed in Figure 1 for
V
CC
= 5V and a 10k pull-up resistor on each side (55pF on
one side and 20pF on the other). SDAIN and SCLIN are
pulled-up to 3.3V, and SDAOUT and SCLOUT are pulled-
up to 5V. Since the output side has less capacitance than
the input, it rises faster and the effective low to high
propagation delay is negative.
Figure 1. Input-Output Connection
4301 F01
OUTPUT
SIDE
20pF
INPUT
SIDE
55pF
1µs/DIV
1V/DIV
6
LTC4301
4301fb
OPERATIO
U
There is a finite high to low propagation delay through the
connection circuitry for falling waveforms. Figure 2 shows
the falling edge waveforms for the same pull-up resistors
and equivalent capacitance conditions as used in Figure 1.
An external N-channel MOSFET device pulls down the
voltage on the side with 55pF capacitance; LTC4301 pulls
down the voltage on the opposite side with a delay of 60ns.
This delay is always positive and is a function of supply
voltage, temperature and the pull-up resistors and equiva-
lent bus capacitances on both sides of the bus. The Typical
Performance Characteristics section shows high to low
propagation delay as a function of temperature and volt-
age for 10k pull-up resistors pulled-up to V
CC
and 100pF
equivalent capacitance on both sides of the part. Larger
output capacitances translate to longer delays (up to
150ns). Users must quantify the difference in propagation
times for a rising edge versus a falling edge in their
systems and adjust setup and hold times accordingly.
Figure 2. Input-Output Connection
High to Low Propagation Delay
Ready Digital Output
This pin provides a digital flag which is low when either CS
is high or the start-up sequence described earlier in this
section has not been completed. READY goes high when
CS is low and start-up is complete. The pin is driven by an
open-drain pull-down capable of sinking 3mA while hold-
ing 0.4V on the pin. Connect a resistor of 10k to V
CC
to
provide the pull-up.
Connection Sense
When the CS pin is driven above 1.4V with respect to the
LTC4301’s ground, the backplane side is disconnected
from the card side and the READY pin is internally pulled
low. When the pin voltage is low, the part waits for data
transactions on both the backplane and card sides to be
complete (as described in the Start-Up section) before
reconnecting the two sides. At this time the internal
pulldown on READY releases.
4301 F02
INPUT
SIDE
55pF
OUTPUT
SIDE
20pF
1V/DIV
20ns/DIV

LTC4301IMS8#PBF

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Interface - Signal Buffers, Repeaters Supply Independent I2C Bus Buffer
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union