AD9708
–9–
REV. B
voltage. Figure 17 shows a buffered singled-ended output con-
figuration in which the op amp, U1, performs an I-V conversion
on the AD9708 output current. U1 provides a negative unipolar
output voltage and its full-scale output voltage is simply the
product of R
FB
and I
OUTFS
. The full-scale output should be set
within U1’s voltage output swing capabilities by scaling I
OUTFS
and/or R
FB
. An improvement in ac distortion performance may
result with a reduced I
OUTFS
, since the signal current U1 will be
required to sink and will be subsequently reduced. Note, the ac
distortion performance of this circuit at higher DAC update
rates may be limited by U1’s slewing capabilities.
AD9708
22
IOUTA
IOUTB
21
C
OPT
200V
U1
V
OUT
= I
OUTFS
3 R
FB
I
OUTFS
= 10mA
R
FB
200V
Figure 17. Unipolar Buffered Voltage Output
IOUTA and IOUTB also have a negative and positive voltage
compliance range that must be adhered to in order to achieve
optimum performance. The positive output compliance range is
slightly dependent on the full-scale output current, I
OUTFS
. It
degrades slightly from its nominal 1.25 V for an I
OUTFS
= 20 mA
to 1.00 V for an I
OUTFS
= 2 mA. Applications requiring the
AD9708’s output (i.e., V
OUTA
and/or V
OUTB
) to extend up to its
output compliance range should size R
LOAD
accordingly. Operation
beyond this compliance range will adversely affect the AD9708’s
linearity.
The differential voltage, V
DIFF
, existing between V
OUTA
and
V
OUTB
may also be converted to a single-ended voltage via a
transformer or differential amplifier configuration. Refer to the
DIFFERENTIAL OUTPUT CONFIGURATION section for
more information.
DIGITAL INPUTS
The AD9708’s digital input consists of eight data input pins and
a clock input pin. The 8-bit parallel data inputs follow standard
positive binary coding where DB7 is the most significant bit
(MSB) and DB0 is the least significant bit (LSB). The digital
interface is implemented using an edge-triggered master slave
latch. The DAC output is updated following the rising edge of
the clock as shown in Figure 1 and is designed to support a
clock rate as high as 125 MSPS. The clock can be operated at
any duty cycle that meets the specified latch pulsewidth. The
setup-and-hold times can also be varied within the clock cycle as
long as the specified minimum times are met; although the
location of these transition edges may affect digital feedthrough
and distortion performance.
The digital inputs are CMOS compatible with logic thresholds,
V
THRESHOLD
set to approximately half the digital positive supply
(DVDD) or
V
THRESHOLD
= DVDD/2 (±20%)
Figure 18 shows the equivalent digital input circuit for the data
and clock inputs. The sleep mode input is similar, except that
it contains an active pull-down circuit, thus ensuring that the
AD9708 remains enabled if this input is left disconnected. The
internal digital circuitry of the AD9708 is capable of operating
over a digital supply range of 2.7 V to 5.5 V. As a result, the
digital inputs can also accommodate TTL levels when DVDD is
set to accommodate the maximum high level voltage, V
OH(MAX)
,
of the TTL drivers. A DVDD of 3 V to 3.3 V will typically
ensure upper compatibility of most TTL logic families.
DVDD
DIGITAL
INPUT
Figure 18. Equivalent Digital Input
Since the AD9708 is capable of being updated up to 125 MSPS,
the quality of the clock and data input signals are important in
achieving the optimum performance. The drivers of the digital
data interface circuitry should be specified to meet the minimum
setup-and-hold times of the AD9708 as well as its required min/
max input logic level thresholds. Typically, the selection of the
slowest logic family that satisfies the above conditions will result
in the lowest data feedthrough and noise.
Digital signal paths should be kept short and run lengths matched
to avoid propagation delay mismatch. The insertion of a low
value resistor network (i.e., 20 to 100 ) between the AD9708
digital inputs and driver outputs may be helpful in reducing any
overshooting and ringing at the digital inputs that contribute to
data feedthrough. For longer run lengths and high data update
rates, strip line techniques with proper termination resistors
should be considered to maintain “clean” digital inputs. Also,
operating the AD9708 with reduced logic swings and a corre-
sponding digital supply (DVDD) will also reduce data feedthrough.
The external clock driver circuitry should provide the AD9708
with a low jitter clock input meeting the min/max logic levels
while providing fast edges. Fast clock edges will help minimize
any jitter that will manifest itself as phase noise on a recon-
structed waveform. However, the clock input could also be
driven by via a sine wave, which is centered around the digital
threshold (i.e., DVDD/2), and meets the min/max logic threshold.
This may result in a slight degradation in the phase noise, which
becomes more noticeable at higher sampling rates and output
frequencies. Note, at higher sampling rates the 20% tolerance
of the digital logic threshold should be considered since it will
affect the effective clock duty cycle and subsequently cut into
the required data setup-and-hold times.
SLEEP MODE OPERATION
The AD9708 has a power-down function that turns off the
output current and reduces the supply current to less than 8.5 mA
over the specified supply range of 2.7 V to 5.5 V and tempera-
ture range. This mode can be activated by applying a logic level
“1” to the SLEEP pin. This digital input also contains an active
pull-down circuit that ensures the AD9708 remains enabled if
this input is left disconnected. The SLEEP input with active
pull-down requires <40 µA of drive current.
The power-up and power-down characteristics of the AD9708
are dependent on the value of the compensation capacitor con-
nected to COMP2 (Pin 23). With a nominal value of 0.1 µF, the
AD9708 takes less than 5 µs to power down and approximately
3.25 ms to power back up.
AD9708
–10–
REV. B
POWER DISSIPATION
The power dissipation, P
D
, of the AD9708 is dependent on
several factors, including: (1) AVDD and DVDD, the power
supply voltages; (2) I
OUTFS
, the full-scale current output; (3)
f
CLOCK
, the update rate; (4) and the reconstructed digital input
waveform. The power dissipation is directly proportional to the
analog supply current, I
AVDD
, and the digital supply current,
I
DVDD.
I
AVDD
is directly proportional to I
OUTFS
, as shown in
Figure 19, and is insensitive to f
CLOCK
.
Conversely, I
DVDD
is dependent on both the digital input wave-
form, f
CLOCK
, and digital supply DVDD. Figures 20 and 21
show I
DVDD
as a function of full-scale sine wave output ratios
(f
OUT
/f
CLOCK
) for various update rates with DVDD = 5 V and
DVDD = 3 V, respectively. Note, how I
DVDD
is reduced by more
than a factor of 2 when DVDD is reduced from 5 V to 3 V.
APPLYING THE AD9708
Power and Grounding Considerations
In systems seeking to simultaneously achieve high speed and
high performance, the implementation and construction of the
printed circuit board design is often as important as the circuit
design. Proper RF techniques must be used in device selection
placement and routing and supply bypassing and grounding.
The evaluation board for the AD9708, which uses a four layer
PC board, serves as a good example for the above mentioned
considerations. The evaluation board provides an illustration of
the recommended printed circuit board ground, power and
signal plane layouts.
Proper grounding and decoupling should be a primary objective
in any high speed system. The AD9708 features separate analog
and digital supply and ground pins to optimize the management
of analog and digital ground currents in a system. In general,
AVDD, the analog supply, should be decoupled to ACOM, the
analog common, as close to the chip as physically possible. Simi-
larly, DVDD, the digital supply, should be decoupled to DCOM
as close as physically as possible.
For those applications requiring a single +5 V or +3 V supply
for both the analog and digital supply, a clean analog supply
may be generated using the circuit shown in Figure 22. The
circuit consists of a differential LC filter with separate power
supply and return lines. Lower noise can be attained using low
ESR type electrolytic and tantalum capacitors.
I
OUTFS
– mA
30
0
2204681012141618
25
20
15
10
5
I
AVDD
– mA
Figure 19. I
AVDD
vs. I
OUTFS
RATIO (f
OUT
/f
CLK
)
18
16
0
0.01 10.1
I
DVDD
– mA
8
6
4
2
12
10
14
5MSPS
25MSPS
50MSPS
100MSPS
125MSPS
Figure 20. I
DVDD
vs. Ratio
@ DVDD = 5 V
100mF
ELECT.
10-22mF
TANT.
0.1mF
CER.
TTL/CMOS
LOGIC
CIRCUITS
+5V OR +3V
POWER SUPPLY
FERRITE
BEADS
AVDD
ACOM
Figure 22. Differential LC Filter for Single +5 V or +3 V
Applications
Maintaining low noise on power supplies and ground is critical
to obtaining optimum results from the AD9708. If properly
implemented, ground planes can perform a host of functions on
high speed circuit boards: bypassing, shielding, current trans-
port, etc. In mixed signal design, the analog and digital portions
of the board should be distinct from each other, with the analog
ground plane confined to the areas covering the analog signal
traces, and the digital ground plane confined to areas covering
the digital interconnects.
All analog ground pins of the DAC, reference and other analog
components, should be tied directly to the analog ground plane.
The two ground planes should be connected by a path 1/8 to
1/4 inch wide underneath or within 1/2 inch of the DAC to
maintain optimum performance. Care should be taken to ensure
that the ground plane is uninterrupted over crucial signal paths.
On the digital side, this includes the digital input lines running
to the DAC as well as any clock signals. On the analog side, this
includes the DAC output signal, reference signal and the supply
feeders.
The use of wide runs or planes in the routing of power lines is
also recommended. This serves the dual role of providing a low
series impedance power supply to the part, as well as providing
some “free” capacitive decoupling to the appropriate ground
plane. It is essential that care be taken in the layout of signal and
power ground interconnects to avoid inducing extraneous
voltage drops in the signal ground paths. It is recommended that
all connections be short, direct and as physically close to the
package as possible in order to minimize the sharing of conduc-
tion paths between different currents. When runs exceed an inch
in length, strip line techniques with proper termination resistor
RATIO (f
OUT
/f
CLK
)
8
0
0.01 10.1
I
DVDD
– mA
6
4
2
5MSPS
25MSPS
50MSPS
100MSPS
125MSPS
Figure 21. I
DVDD
vs. Ratio
@ DVDD = 3 V
AD9708
–11–
REV. B
should be considered. The necessity and value of this resistor
will be dependent upon the logic family used.
For a more detailed discussion of the implementation and
construction of high speed, mixed signal printed circuit boards,
refer to Analog Devices’ application notes AN-280 and AN-333.
DIFFERENTIAL OUTPUT CONFIGURATIONS
For applications requiring the optimum dynamic performance
and/or a bipolar output swing, a differential output configura-
tion is suggested. A differential output configuration may con-
sists of either an RF transformer or a differential op amp
configuration. The transformer configuration is well suited for
ac coupling applications. It provides the optimum high fre-
quency performance due to its excellent rejection of common-
mode distortion (i.e., even-order harmonics) and noise over a
wide frequency range. It also provides electrical isolation and
the ability to deliver twice the power to the load (i.e., assuming
no source termination). The differential op amp configuration is
suitable for applications requiring dc coupling, a bipolar output,
signal gain, and/or level shifting.
Figure 23 shows the AD9708 in a typical transformer coupled
output configuration. The center-tap on the primary side of the
transformer must be connected to ACOM to provide the necessary
dc current path for both IOUTA and IOUTB. The complemen-
tary voltages appearing at IOUTA and IOUTB (i.e., V
OUTA
and
V
OUTB
) swing symmetrically around ACOM and should be
maintained within the specified output compliance range of the
AD9708. A differential resistor, R
DIFF
, may be inserted in
applications in which the output of the transformer is connected
to the load, R
LOAD
, via a passive reconstruction filter or cable.
R
DIFF
is determined by the transformer’s impedance ratio and
provides the proper source termination. Note that approxi-
mately half the signal power will be dissipated across R
DIFF
.
R
LOAD
AD9708
22
21
MINI-CIRCUITS
T1-1T
OPTIONAL R
DIFF
IOUTA
IOUTB
Figure 23. Differential Output Using a Transformer
An op amp can also be used to perform a differential to single-
ended conversion as shown in Figure 24. The AD9708 is
configured with two equal load resistors, R
LOAD
, of 25 . The
differential voltage developed across IOUTA and IOUTB is
converted to a single-ended signal via the differential op amp
configuration. An optional capacitor can be installed across
IOUTA and IOUTB forming a real pole in a low-pass filter.
The addition of this capacitor also enhances the op amps distortion
performance by preventing the DACs high slewing output from
overloading the op amp’s input.
AD9708
22
IOUTA
IOUTB
21
C
OPT
500V
225V
225V
500V
25V25V
AD8072
Figure 24. DC Differential Coupling Using an Op Amp
The common-mode rejection of this configuration is typically
determined by the resistor matching. In this circuit, the differ-
ential op amp circuit is configured to provide some additional
signal gain. The op amp must operate off a dual supply since its
output is approximately ±1.0 V. A high speed amplifier capable
of preserving the differential performance of the AD9708 while
meeting other system level objectives (i.e., cost, power) should
be selected. The op amps differential gain, its gain setting resis-
tor values and full-scale output swing capabilities should all be
considered when optimizing this circuit.
The differential circuit shown in Figure 25 provides the neces-
sary level-shifting required in a single supply system. In this
case, AVDD, which is the positive analog supply for both the
AD9708 and the op amp, is also used to level-shift the differ-
ential output of the AD9762 to midsupply (i.e., AVDD/2).
AD9708
22
IOUTA
IOUTB
21
C
OPT
500V
225V
225V
1kV25V
25V
AD8072
1kV
AVDD
Figure 25. Single-Supply DC Differential Coupled Circuit
AD9708 EVALUATION BOARD
General Description
The AD9708-EB is an evaluation board for the AD9708 8-bit
D/A converter. Careful attention to layout and circuit design,
combined with a prototyping area, allows the user to easily and
effectively evaluate the AD9708 in any application where high
resolution, high speed conversion is required.
This board allows the user the flexibility to operate the AD9708
in various configurations. Possible output configurations include
transformer coupled, resistor terminated, inverting/noninverting
and differential amplifier outputs. The digital inputs are
designed to be driven directly from various word generators,
with the on-board option to add a resistor network for proper
load termination. Provisions are also made to operate the
AD9708 with either the internal or external reference, or to
exercise the power-down feature.
Refer to the application note AN-420 “Using the AD9760/
AD9762/AD9764-EB Evaluation Board” for a thorough
description and operating instructions for the AD9708 evalua-
tion board.

AD9708AR

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Digital to Analog Converters - DAC 8-Bit 100 MSPS
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union