LT3083
10
3083fa
APPLICATIONS INFORMATION
The LT3083 regulator is easy to use and has all the protection
features expected in high performance regulators. Included
are short-circuit protection and safe operating area protec-
tion, as well as thermal shutdown with hysteresis.
The LT3083 fits well in applications needing multiple rails.
This new architecture adjusts down to zero with a single
resistor, handling modern low voltage digital IC’s as well as
allowing easy parallel operation and thermal management
without heat sinks. Adjusting to zero output allows shutting
off the powered circuitry. When the input is pre-regulated,
such as with a 5V or 3.3V input supply, external resistors
can help spread the heat.
A precision “0” TC 50μA reference current source connects
to the noninverting input of a power operational amplifier.
The power operational amplifier provides a low impedance
buffered output to the voltage on the noninverting input.
A single resistor from the noninverting input to ground
sets the output voltage. If this resistor is set to 0Ω, zero
output voltage results. Therefore, any output voltage can
be obtained between zero and the maximum defined by
the input power supply.
The benefit of using a true internal current source as the
reference, as opposed to a bootstrapped reference in older
regulators, is not so obvious in this architecture. A true
reference current source allows the regulator to have gain
and frequency response independent of the impedance on
the positive input. On older adjustable regulators, such as
the LT1086, loop gain changes with output voltage and
bandwidth changes if the adjustment pin is bypassed to
ground. For the LT3083, the loop gain is unchanged with
output voltage changes or bypassing. Output regulation
is not a fixed percentage of output voltage, but is a fixed
fraction of millivolts. Use of a true current source allows
all of the gain in the buffer amplifier to provide regulation,
and none of that gain is needed to amplify up the reference
to a higher output voltage.
The LT3083 has the collector of the output transistor con-
nected to a separate pin from the control input. Since the
dropout on the collector (IN pin) is typically only 310mV,
two supplies can be used to power the LT3083 to reduce
dissipation: a higher voltage supply for the control circuitry
and a lower voltage supply for the collector. This increases
efficiency and reduces dissipation. To further spread the
heat, a resistor inserted in series with the collector moves
some of the heat out of the IC to spread it on the PC board
(see the section
Reducing Power Dissipation
).
The LT3083 can be operated in two modes. Three termi-
nal mode has the V
CONTROL
pin connected to the IN pin
and gives a limitation of 1.25V dropout. Alternatively, the
V
CONTROL
pin is separately tied to a higher voltage and the
IN pin to a lower voltage giving 310mV dropout on the IN
pin, minimizing total power dissipation. This allows for a
3A supply regulating from 2.5V
IN
to 1.8V
OUT
or 1.8V
IN
to
1.2V
OUT
with low power dissipation.
Programming Output Voltage
The LT3083 sources a 50μA reference current that flows
out of the SET pin. Connecting a resistor from SET to
ground generates a voltage that becomes the reference
point for the error amplifier (see Figure 1). The refer-
ence voltage equals 50µA multiplied by the value of
the SET pin resistor. Any voltage can be generated and
there is no minimum output voltage for the regulator.
Figure 1. Basic Adjustable Regulator
+
LT3083
IN
V
CONTROL
V
CONTROL
OUT
3083 F01
SET
C
OUT
R
SET
V
OUT
C
SET
+
V
IN
+
50µA
V
OUT
= 50µA • R
SET
LT3083
11
3083fa
APPLICATIONS INFORMATION
Table 1 lists many common output voltages and the clos-
est standard 1% resistor values used to generate that
output voltage.
Regulation of the output voltage requires a minimum
load current of 1mA. For a true zero voltage output
operation, return this 1mA load current to a negative
supply voltage.
Table 1. 1% Resistors for Common Output Voltages
V
OUT
(V) R
SET
(k)
1 20
1.2 24.3
1.5 30.1
1.8 35.7
2.5 49.9
3.3 66.5
5 100
With the lower level current used to generate the refer-
ence voltage, leakage paths to or from the SET pin can
create errors in the reference and output voltages. High
quality insulation should be used (e.g., Teflon, Kel-F);
cleaning of all insulating surfaces to remove fluxes and
other residues will probably be required. Surface coating
may be necessary to provide a moisture barrier in high
humidity environments.
Minimize board leakage by encircling the SET pin and
circuitry with a guard ring operated at a potential close
to itself. Tie the guard ring to the OUT pin. Guard rings
on both sides of the circuit board are required. Bulk leak-
age reduction depends on the guard ring width. 50nA
of leakage into or out of the SET pin and its associated
circuitry creates a 0.1% reference voltage error. Leakages
of this magnitude, coupled with other sources of leakage,
can cause significant offset voltage and reference drift,
especially over the possible operating temperature range.
Figure 2 depicts an example of a guard ring layout.
If guard ring techniques are used, this bootstraps any
stray capacitance at the SET pin. Since the SET pin is
a high impedance node, unwanted signals may couple
into the SET pin and cause erratic behavior. This will
be most noticeable when operating with minimum
output capacitors at full load current. The easiest way
to remedy this is to bypass the SET pin with a small
amount of capacitance from SET to ground, 10pF to
20pF is sufficient.
Stability and Input Capacitance
Typical minimum input capacitance is 10µF for IN and
2.2µF for V
CONTROL
. These amounts of capacitance work
well using low ESR ceramic capacitors when placed close
to the LT3083 and the circuit is located in close proximity
to the power source. Higher values of input capacitance
may be necessary to maintain stability depending on the
application.
Oscillating regulator circuits are often viewed as a problem
of phase margin and inadequate stability with the output
capacitor used. More and more frequently, the problem
is not the regulator operating without sufficient output
capacitance, but instead with too little input capacitance.
The entire circuit must be analyzed and debugged as a
whole; conditions relating to the input of the regulator
cannot be ignored.
The LT3083 input presents a high impedance to its power
source: the output voltage and load current are independent
of input voltage variations. To maintain stability of the
regulator circuit as a whole, the LT3083 must be powered
from a low impedance supply. When using short supply
lines or powering directly from a large switching supply,
there is no issue—hundreds or thousands of microfarads
of capacitance are available through a low impedance.
Figure 2. Guard Ring Layout Example
for DF Package
3083 F02
SET PIN
GND
OUT
LT3083
12
3083fa
APPLICATIONS INFORMATION
When longer supply lines, filters, current sense resistors,
or other impedances exist between the supply and the
input to the LT3083, input bypassing should be reviewed
if stability concerns are seen. Just as output capacitance
supplies the instantaneous changes in load current for
output transients until the regulator is able to respond,
input capacitance supplies local power to the regulator until
the main supply responds. When impedance separates the
LT3083 from its main supply, the local input can droop
so that the output follows. The entire circuit may break
into oscillations, usually characterized by larger amplitude
oscillations on the input and coupling to the output.
Low ESR, ceramic input bypass capacitors are acceptable
for applications without long input leads. However, applica-
tions connecting a power supply to an LT3083 circuit’s IN
and GND pins with long input wires combined with low
ESR, ceramic input capacitors are prone to voltage spikes,
reliability concerns and application-specific board oscil-
lations. The input wire inductance found in many battery
powered applications, combined with the low ESR ceramic
input capacitor, forms a high-Q LC resonant tank circuit. In
some instances this resonant frequency beats against the
output current dependent LDO bandwidth and interferes
with proper operation. Simple circuit modifications/solu-
tions are then required. This behavior is not indicative of
LT3083 instability, but is a common ceramic input bypass
capacitor application issue.
The self-inductance, or isolated inductance, of a wire is
directly proportional to its length. Wire diameter is not a
major factor on its self-inductance. For example, the self-
inductance of a 2-AWG isolated wire (diameter = 0.26") is
about half the self-inductance of a 30-AWG wire (diameter
= 0.01"). One foot of 30-AWG wire has about 465nH of
self-inductance.
One of two ways reduces a wire’s self-inductance. One
method divides the current flowing towards the LT3083
between two parallel conductors. In this case, the farther
apart the wires are from each other, the more the self-in-
ductance is reduced; up to a 50% reduction when placed
a few inches apart. Splitting the wires basically connects
two equal inductors in parallel, but placing them in close
proximity gives the wires mutual inductance adding to
the self-inductance. The second and most effective way
to reduce overall inductance is to place both forward and
return current conductors (the input and GND wires) in
very close proximity. Two 30-AWG wires separated by only
0.02", used as forward- and return- current conductors,
reduce the overall self-inductance to approximately one-
fifth that of a single isolated wire.
If wiring modifications are not permissible for the applica-
tions, including series resistance between the power supply
and the input of the LT3083 also stabilizes the application.
As little as 0.1Ω to 0.5Ω, often less, is effective in damping
the LC resonance. If the added impedance between the
power supply and the input is unacceptable, adding ESR to
the input capacitor also provides the necessary damping of
the LC resonance. However, the required ESR is generally
higher than the series impedance required.
Stability and Output Capacitance
The LT3083 requires an output capacitor for stability. It
is designed to be stable with most low ESR capacitors
(typically ceramic, tantalum or low ESR electrolytic). A
minimum output capacitor of 10μF with an ESR of 0.5Ω
or less is recommended to prevent oscillations. Larger
values of output capacitance decrease peak deviations
and provide improved transient response for larger load
current changes. Bypass capacitors, used to decouple
individual components powered by the LT3083, increase
the effective output capacitor value. For improvement in
transient performance, place a capacitor across the volt-
age setting resistor. Capacitors up to 1μF can be used.
This bypass capacitor reduces system noise as well, but
start-up time is proportional to the time constant of the
voltage setting resistor (R
SET
in Figure 1) and SET pin
bypass capacitor.
Give extra consideration to the use of ceramic capacitors.
Ceramic capacitors are manufactured with a variety of di-
electrics, each with different behavior across temperature
and applied voltage. The most common dielectrics used
are specified with EIA temperature characteristic codes of
Z5U, Y5V, X5R and X7R. The Z5U and Y5V dielectrics are
good for providing high capacitances in a small package,
but they tend to have strong voltage and temperature
coefficients as shown in Figures 3 and 4. When used with
a 5V regulator, a 16V 10μF Y5V capacitor can exhibit an

LT3083MPFE#TRPBF

Mfr. #:
Manufacturer:
Analog Devices / Linear Technology
Description:
LDO Voltage Regulators Adjustable 3A Single Resistor Low Dropout Regulator
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union