LTC1380CGN#PBF

4
LTC1380/LTC1393
TYPICAL PERFOR A CE CHARACTERISTICS
UW
V
S
(V)
4.5
I
S
LEAKAGE (nA)
0.010
2.5
0.5
0.5 4.5
1380/93 G04
0.008
0.006
0.004
0.002
0
0.002
0.004
0.006
0.008
0.010
3.5 –1.5
1.5
2.5
3.5
T
A
= 25°C
V
CC
= 5V
V
EE
= –5V
V
CC
= 5V
V
EE
= 0V
V
CC
= 2.7V
V
EE
= 0V
Off-Channel Output Leakage
vs Temperature
TEMPERATURE (°C)
–50
1
10
1000
25 75
1380/93 G07
0.1
0.01
–25 0
50 100 125
0.001
0.0001
100
I
D
LEAKAGE (nA)
V
CC
= 2.7V
V
EE
= 0V
V
D
= 1.35V
V
CC
= 5V
V
EE
= –5V
V
D
= 0V
V
CC
= 5V
V
EE
= 0V
V
D
= 2.5V
Off-Channel Input Leakage
vs Temperature
TEMPERATURE (°C)
50 –25
0.0001
I
S
LEAKAGE (nA)
0.01
10
0
50
75
1380/93 G06
0.001
1
0.1
25
100
125
V
CC
= 5V
V
EE
= 0V
V
S
= 2.5V
V
CC
= 5V
V
EE
= –5V
V
S
= 0V
V
CC
= 2.7V
V
EE
= 0V
V
S
= 1.35V
On-Channel Output Leakage vs V
D
V
D
(V)
4.5
I
D
LEAKAGE (nA)
0.010
2.5
0.5
0.5 4.5
1380/93 G05
0.008
0.006
0.004
0.002
0
0.002
0.004
0.006
0.008
0.010
3.5 –1.5
1.5
2.5
3.5
T
A
= 25°C
V
CC
= 5V
V
EE
= –5V
V
CC
= 5V
V
EE
= 0V
V
CC
= 2.7V
V
EE
= 0V
TEMPERATURE (°C)
–50
0
ON RESISTANCE ()
25
75
100
125
250
175
0
50
75
1380/93 G01
50
200
225
150
–25
25
100
125
I
D
= 1mA
V
CC
= 2.7V
V
EE
= 0V
V
S
= 1.35V
V
CC
= 5V
V
EE
= 0V
V
S
= 2.5V
V
CC
= 5V
V
EE
= –5V
V
S
= 0V
On Resistance vs Temperature
V
S
(V)
4.5
I
S
LEAKAGE (nA)
0.0020
2.5
0.5
0.5 4.5
1380/93 G02
0.0018
0.0016
0.0014
0.0012
0.0010
0.0008
0.0006
0.0004
0.0002
0
3.5 –1.5
1.5
2.5
3.5
T
A
= 25°C
V
CC
= 5V
V
EE
= –5V
V
CC
= 5V
V
EE
= 0V
V
CC
= 2.7V
V
EE
= 0V
V
D
(V)
4.5
I
D
LEAKAGE (nA)
0.010
2.5
0.5
0.5 4.5
1380/93 G03
0.008
0.006
0.004
0.002
0
0.002
0.004
0.006
0.008
0.010
3.5 –1.5
1.5
2.5
3.5
T
A
= 25°C
V
CC
= 5V
V
EE
= –5V
V
CC
= 2.7V
V
EE
= 0V
V
CC
= 5V
V
EE
= 0V
Off-Channel Output Leakage vs V
D
On-Channel Input Leakage
vs Temperature
TEMPERATURE (°C)
–50
1
10
1000
25 75
1380/93 G08
0.1
0.01
–25 0
50 100 125
0.001
0.0001
100
I
S
LEAKAGE (nA)
V
CC
= 5V
V
EE
= –5V
V
S
= 0V
V
CC
= 5V
V
EE
= 0V
V
S
= 2.5V
V
CC
= 2.7V
V
EE
= 0V
V
S
= 1.35V
TEMPERATURE (°C)
–50
1
10
1000
25 75
1380/93 G09
0.1
0.01
–25 0
50 100 125
0.001
0.0001
100
I
D
LEAKAGE (nA)
V
CC
= 5V
V
EE
= –5V
V
D
= 0V
V
CC
= 5V
V
EE
= 0V
V
D
= 2.5V
V
CC
= 2.7V
V
EE
= 0V
V
D
= 1.35V
Off-Channel Input Leakage vs V
S
On-Channel Input Leakage vs V
S
On-Channel Output Leakage
vs Temperature
(Note 5)
5
LTC1380/LTC1393
TYPICAL PERFOR A CE CHARACTERISTICS
UW
Off Time vs Temperature Q
INJ
vs V
C
(Figure 3)On Time vs Temperature
TEMPERATURE (°C)
–50
ON TIME (ns)
1400
25
1380/93 G11
800
400
–25 0 50
200
0
1600
1200
1000
600
75 100 125
V
CC
= 2.7V
V
EE
= 0V
V
S
= 1.35V
V
CC
= 5V
V
EE
= 0V
V
S
= 2.5V
V
CC
= 5V
V
EE
= –5V
V
S
= 0V
V
C
(V)
–5
Q
INJ
(pC)
3.0
4.0
5.0
3
1380/93 G12
2.0
1.0
2.5
3.5
4.5
1.5
0.5
0
–3
–1
1
–4 4
–2
0
2
5
T
A
= 25°C
V
CC
= 5V
V
EE
= –5V
V
CC
= 2.7V
V
EE
= 0V
V
CC
= 5V
V
EE
= 0V
TEMPERATURE (°C)
–50
OFF TIME (ns)
700
25
1380/93 G10
400
200
–25 0 50
100
0
800
600
500
300
75 100 125
V
CC
= 5V
V
EE
= –5V
V
S
= 0V
V
CC
= 2.7V
V
EE
= 0V
V
S
= 1.35V
V
CC
= 5V
V
EE
= 0V
V
S
= 2.5V
Q
INJ
vs Temperature (Figure 3)
TEMPERATURE (°C)
–50
0
Q
INJ
(pC)
0.2
0.6
0.8
1.0
2.0
1.4
0
50
75
1380/93 G13
0.4
1.6
1.8
1.2
–25
25
100
125
V
CC
= 5V
V
EE
= –5V
V
S
= 0V
V
CC
= 2.7V
V
EE
= 0V
V
S
= 1.35V
V
CC
= 5V
V
EE
= 0V
V
S
= 2.5V
Off-Channel Isolation vs Input
Common Mode Voltage (Figure 2)
I
CC
vs Temperature
TEMPERATURE (°C)
–50
0
I
CC
(µA)
1
3
4
5
10
7
0
50
75
1380/93 G15
2
8
9
6
–25
25
100
125
V
CC
= 5V
V
EE
= –5V
V
CC
= 2.7V
V
EE
= 0V
V
CC
= 5V
V
EE
= 0V
TEMPERATURE (°C)
–50
100
I
EE
(nA)
–90
–70
–60
–50
0
–30
0
50
75
1380/93 G16
–80
–20
–10
–40
–25
25
100
125
V
CC
= 5V
V
EE
= –5V
V
S
= 0V
I
EE
vs Temperature
(Note 5)
V
C
(V)
–5
OIRR (dB)
–75
–73
–74
–72
–71
–70
–69
–68
–67
–66
–65
3
1380/93 G14
–3 1 1 52–4 2 0 4
V
CC
= 5V
V
EE
= –5V
V
CC
= 5V
V
EE
= 0V
V
CC
= 2.7V
V
EE
= 0V
T
A
= 25°C
V
S
= 200mV
P-P
, 100kHz
R
L
= 1k
6
LTC1380/LTC1393
PIN FUNCTIONS
UUU
S0 to S7/S0
±
to S3
±
(Pin 1 to Pin 8): Single-Ended Analog
Multiplexer Inputs (S0 to S7) for the LTC1380. Differential
Analog Multiplexer Inputs (S0
±
to S3
±
) for the LTC1393.
D
O
/D
O
+
(Pin 9): Analog Multiplexer Output for the LTC1380.
Positive Differential Analog Multiplexer Output for the
LTC1393.
V
EE
/D
O
(Pin 10): Negative Supply Pin for the LTC1380.
Negative Differential Multiplexer Output for the LTC1393.
For the LTC1380, V
EE
should be bypassed to GND with a
0.1µF ceramic capacitor when operating from split sup-
plies or connected to GND for single supply operation.
GND (Pin 11): Ground Pin.
A1, AO (Pin 12, Pin 13): Address Selection Pins. Tie these
two pins to either V
CC
or GND to select one of four possible
addresses to which the LTC1380/LTC1393 will respond.
SDA (Pin 14): SMBus Bidirectional Digital Input/Output
Pin. This pin has an open-drain output and requires a pull-
up resistor or current source to the positive supply for
normal operation. Data is shifted into and acknowledged
by the LTC1380/LTC1393 using this pin.
SCL (Pin 15): SMBus Clock Input. SDA data is shifted in
at rising edges of this clock during data transfer.
V
CC
(Pin 16): Positive Supply Pin. This pin should be
bypassed to GND with a 0.1µF ceramic capacitor.
BLOCK DIAGRA
W
ADDRESS
COMPARATOR
SMBus STATE
MACHINE
4-BIT LATCH
AND DECODER
SHIFT REGISTER
HOLD
STOP
1380/93 BD
SDA
A0
A1
SCL
MULTIPLEXER
SWITCHES
ANALOG OUTPUT(S)
(LTC1380: D
O
)
(LTC1393: D
O
±
)
ANALOG INPUTS
(LTC1380: S0 TO S7)
(LTC1393: S0
±
TO S3
±
)

LTC1380CGN#PBF

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Multiplexer Switch ICs SMBus 8/Ch Single-Ended Mux
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union