13
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72V2101/72V2111 3.3V HIGH DENSITY CMOS
SUPERSYNC FIFO
TM
262,144 x 9, 524,288 x 9
SIGNAL DESCRIPTION
INPUTS:
DATA IN (D0 - D8)
Data inputs for 9-bit wide data.
CONTROLS:
MASTER RESET (MRS)
A Master Reset is accomplished whenever the MRS input is taken to a
LOW state. This operation sets the internal read and write pointers to the
first location of the RAM array. PAE will go LOW, PAF will go HIGH, and
HF will go HIGH.
If FWFT is LOW during Master Reset then the IDT Standard mode,
along with EF and FF are selected. EF will go LOW and FF will go HIGH.
If FWFT is HIGH, then the First Word Fall Through mode (FWFT), along with
IR and OR, are selected. OR will go HIGH and IR will go LOW.
If LD is LOW during Master Reset, then PAE is assigned a threshold 127
words from the empty boundary and PAF is assigned a threshold 127 words
from the full boundary; 127 words corresponds to an offset value of 07FH.
Following Master Reset, parallel loading of the offsets is permitted, but not
serial loading.
If LD is HIGH during Master Reset, then PAE is assigned a threshold
1,023 words from the empty boundary and PAF is assigned a threshold
1,023 words from the full boundary; 1,023 words corresponds to an offset
value of 3FFH. Following Master Reset, serial loading of the offsets is
permitted, but not parallel loading.
Parallel reading of the registers is always permitted. (See section
describing the LD pin for further details.)
During a Master Reset, the output register is initialized to all zeroes. A
Master Reset is required after power up, before a write operation can take
place. MRS is asynchronous.
See Figure 5, Master Reset Timing, for the relevant timing diagram.
PARTIAL RESET (PRS)
A Partial Reset is accomplished whenever the PRS input is taken to a LOW
state. As in the case of the Master Reset, the internal read and write pointers are
set to the first location of the RAM array, PAE goes LOW, PAF goes HIGH, and
HF goes HIGH.
Whichever mode is active at the time of Partial Reset, IDT Standard mode
or First Word Fall Through, that mode will remain selected. If the IDT Standard
mode is active, then FF will go HIGH and EF will go LOW. If the First Word Fall
Through mode is active, then OR will go HIGH, and IR will go LOW.
Following Partial Reset, all values held in the offset registers remain
unchanged. The programming method (parallel or serial) currently active
at the time of Partial Reset is also retained. The output register is initialized
to all zeroes. PRS is asynchronous.
A Partial Reset is useful for resetting the device during the course of
operation, when reprogramming partial flag offset settings may not be
convenient.
See Figure 6, Partial Reset Timing, for the relevant timing diagram.
RETRANSMIT (RT)
The Retransmit operation allows data that has already been read to be
accessed again. There are two stages: first, a setup procedure that resets the
read pointer to the first location of memory, then the actual retransmit, which
consists of reading out the memory contents, starting at the beginning of the
memory.
Retransmit setup is initiated by holding RT LOW during a rising RCLK edge.
REN and WEN must be HIGH before bringing RT LOW.
If IDT Standard mode is selected, the FIFO will mark the beginning of
the Retransmit setup by setting EF LOW. The change in level will only be
noticeable if EF was HIGH before setup. During this period, the internal
read pointer is initialized to the first location of the RAM array.
When EF goes HIGH, Retransmit setup is complete and read operations
may begin starting with the first location in memory. Since IDT Standard
mode is selected, every word read including the first word following
Retransmit setup requires a LOW on REN to enable the rising edge of
RCLK. See Figure 11, Retransmit Timing (IDT Standard Mode), for the
relevant timing diagram.
If FWFT mode is selected, the FIFO will mark the beginning of the Retransmit
setup by setting OR HIGH. During this period, the internal read pointer is set to
the first location of the RAM array.
When OR goes LOW, Retransmit setup is complete; at the same time,
the contents of the first location appear on the outputs. Since FWFT mode
is selected, the first word appears on the outputs, no LOW on REN is
necessary. Reading all subsequent words requires a LOW on REN to
enable the rising edge of RCLK. See Figure 12, Retransmit Timing (FWFT
Mode), for the relevant timing diagram.
FIRST WORD FALL THROUGH/SERIAL IN (FWFT/SI)
This is a dual purpose pin. During Master Reset, the state of the FWFT/SI
input determines whether the device will operate in IDT Standard mode or First
Word Fall Through (FWFT) mode.
If, at the time of Master Reset, FWFT/SI is LOW, then IDT Standard
mode will be selected. This mode uses the Empty Flag (EF) to indicate
whether or not there are any words present in the FIFO memory. It also uses
the Full Flag function (FF) to indicate whether or not the FIFO memory has
any free space for writing. In IDT Standard mode, every word read from the
FIFO, including the first, must be requested using the Read Enable (REN)
and RCLK.
If, at the time of Master Reset, FWFT/SI is HIGH, then FWFT mode will
be selected. This mode uses Output Ready (OR) to indicate whether or not
there is valid data at the data outputs (Qn). It also uses Input Ready (IR) to
indicate whether or not the FIFO memory has any free space for writing. In
the FWFT mode, the first word written to an empty FIFO goes directly to Qn
after three RCLK rising edges, REN = LOW is not necessary. Subsequent
words must be accessed using the Read Enable (REN) and RCLK.
After Master Reset, FWFT/SI acts as a serial input for loading PAE and
PAF offsets into the programmable registers. The serial input function can
only be used when the serial loading method has been selected during
Master Reset. Serial programming using the FWFT/SI pin functions the
same way in both IDT Standard and FWFT modes.
WRITE CLOCK (WCLK)
A write cycle is initiated on the rising edge of the WCLK input. Data setup
and hold times must be met with respect to the LOW-to-HIGH transition of
the WCLK. It is permissible to stop the WCLK. Note that while WCLK is idle,
the FF/IR, PAF and HF flags will not be updated. (Note that WCLK is only
capable of updating HF flag to LOW.) The Write and Read Clocks can either
be independent or coincident.
WRITE ENABLE (WEN)
When the WEN input is LOW, data may be loaded into the FIFO RAM array
on the rising edge of every WCLK cycle if the device is not full. Data is stored
in the RAM array sequentially and independently of any ongoing read
operation.
14
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72V2101/72V2111 3.3V HIGH DENSITY CMOS
SUPERSYNC FIFO
TM
262,144 x 9, 524,288 x 9
When WEN is HIGH, no new data is written in the RAM array on each WCLK
cycle.
To prevent data overflow in the IDT Standard mode, FF will go LOW,
inhibiting further write operations. Upon the completion of a valid read cycle,
FF will go HIGH allowing a write to occur. The FF is updated by two WCLK
cycles + tSKEW after the RCLK cycle.
To prevent data overflow in the FWFT mode, IR will go HIGH, inhibiting
further write operations. Upon the completion of a valid read cycle, IR will
go LOW allowing a write to occur. The IR flag is updated by two WCLK
cycles + tSKEW after the valid RCLK cycle.
WEN is ignored when the FIFO is full in either FWFT or IDT Standard mode.
READ CLOCK (RCLK)
A read cycle is initiated on the rising edge of the RCLK input. Data can
be read on the outputs, on the rising edge of the RCLK input. It is permissible
to stop the RCLK. Note that while RCLK is idle, the EF/OR, PAE and HF
flags will not be updated. (Note that RCLK is only capable of updating the
HF flag to HIGH.) The Write and Read Clocks can be independent or
coincident.
READ ENABLE (REN)
When Read Enable is LOW, data is loaded from the RAM array into the
output register on the rising edge of every RCLK cycle if the device is not
empty.
When the REN input is HIGH, the output register holds the previous data
and no new data is loaded into the output register. The data outputs Q
0
-Q
n
maintain the previous data value.
In the IDT Standard mode, every word accessed at Qn, including the first
word written to an empty FIFO, must be requested using REN. When the
last word has been read from the FIFO, the Empty Flag (EF) will go LOW,
inhibiting further read operations. REN is ignored when the FIFO is empty.
Once a write is performed, EF will go HIGH allowing a read to occur. The
EF flag is updated by two RCLK cycles + tSKEW after the valid WCLK cycle.
In the FWFT mode, the first word written to an empty FIFO automatically
goes to the outputs Qn, on the third valid LOW to HIGH transition of RCLK
+ tSKEW after the first write. REN does not need to be asserted LOW. In
order to access all other words, a read must be executed using REN. The
RCLK LOW to HIGH transition after the last word has been read from the
FIFO, Output Ready (OR) will go HIGH with a true read (RCLK with REN =
LOW), inhibiting further read operations. REN is ignored when the FIFO is
empty.
SERIAL ENABLE (SEN)
The SEN input is an enable used only for serial programming of the
offset registers. The serial programming method must be selected during
Master Reset. SEN is always used in conjunction with LD. When these lines
are both LOW, data at the SI input can be loaded into the program register
one bit for each LOW-to-HIGH transition of WCLK. (See Figure 4.)
When SEN is HIGH, the programmable registers retains the previous
settings and no offsets are loaded. SEN functions the same way in both IDT
Standard and FWFT modes.
OUTPUT ENABLE (OE)
When Output Enable is enabled (LOW), the parallel output buffers receive
data from the output register. When OE is HIGH, the output data bus (Q
n
) goes
into a high impedance state.
LOAD (LD)
This is a dual purpose pin. During Master Reset, the state of the LD input
determines one of two default offset values (127 or 1,023) for the PAE and PAF
flags, along with the method by which these offset registers can be pro-
grammed, parallel or serial. After Master Reset, LD enables write operations
to and read operations from the offset registers. Only the offset loading method
currently selected can be used to write to the registers. Offset registers can be
read only in parallel. A LOW on LD during Master Reset selects a default PAE
offset value of 07FH (a threshold 127 words from the empty boundary), a default
PAF offset value of 07FH (a threshold 127 words from the full boundary), and
parallel loading of other offset values. A HIGH on LD during Master Reset
selects a default PAE offset value of 3FFH (a threshold 1,023 words from the
empty boundary), a default PAF offset value of 3FFH (a threshold 1,023 words
from the full boundary), and serial loading of other offset values.
After Master Reset, the LD pin is used to activate the programming
process of the flag offset values PAE and PAF. Pulling LD LOW will begin
a serial loading or parallel load or read of these offset values. See Figure 4,
Programmable Flag Offset Programming Sequence.
OUTPUTS:
FULL FLAG (FF/IR)
This is a dual purpose pin. In IDT Standard mode, the Full Flag (FF)
function is selected. When the FIFO is full, FF will go LOW, inhibiting further
write operations. When FF is HIGH, the FIFO is not full. If no reads are
performed after a reset (either MRS or PRS), FF will go LOW after D writes to
the FIFO (D = 262,144 for the IDT72V2101 and 524,288 for the IDT72V2111
).
See Figure 7, Write Cycle and Full Flag Timing (IDT Standard Mode), for the
relevant timing information.
In FWFT mode, the Input Ready (IR) function is selected. IR goes LOW
when memory space is available for writing in data. When there is no longer
any free space left, IR goes HIGH, inhibiting further write operations. If no
reads are performed after a reset (either MRS or PRS), IR will go HIGH after
D writes to the FIFO (D = 262,145 for the IDT72V2101 and 524,289 for the
IDT72V2111) See Figure 9, Write Timing (FWFT Mode), for the relevant
timing information.
The IR status not only measures the contents of the FIFO memory, but
also counts the presence of a word in the output register. Thus, in FWFT
mode, the total number of writes necessary to deassert IR is one greater
than needed to assert FF in IDT Standard mode.
FF/IR is synchronous and updated on the rising edge of WCLK.
FF/IR are
double register-buffered outputs.
EMPTY FLAG (EF/OR)
This is a dual purpose pin. In the IDT Standard mode, the Empty Flag
(EF) function is selected. When the FIFO is empty, EF will go LOW,
inhibiting further read operations. When EF is HIGH, the FIFO is not empty. See
Figure 8, Read Cycle, Empty Flag and First Word Latency Timing (IDT
Standard Mode), for the relevant timing information.
In FWFT mode, the Output Ready (OR) function is selected. OR goes
LOW at the same time that the first word written to an empty FIFO appears valid
on the outputs. OR stays LOW after the RCLK LOW to HIGH transition that shifts
the last word from the FIFO memory to the outputs. OR goes HIGH only with
a true read (RCLK with REN = LOW). The previous data stays at the outputs,
indicating the last word was read. Further data reads are inhibited until OR goes
LOW again.
See Figure 10, Read Timing (FWFT Mode), for the relevant timing
information.
15
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72V2101/72V2111 3.3V HIGH DENSITY CMOS
SUPERSYNC FIFO
TM
262,144 x 9, 524,288 x 9
EF/OR is synchronous and updated on the rising edge of RCLK.
In IDT Standard mode, EF is a double register-buffered output. In FWFT
mode, OR is a triple register-buffered output.
PROGRAMMABLE ALMOST-FULL FLAG (PAF)
The Programmable Almost-Full flag (PAF) will go LOW when th
e FIFO
reaches the almost-full condition. In IDT Standard mode, if no reads are
performed after reset (MRS), PAF will go LOW after (D - m) words are written
to the FIFO. The PAF will go LOW after (262,144-m) writes for the IDT72V2101
and (524,288-m) writes for the IDT72V2111. The offset “m” is the full offset
value. The default setting for this value is stated in the footnote of Table 1.
In FWFT mode, the PAF will go LOW after (262,145-m) writes for the
IDT72V2101 and (524,289-m) writes for the IDT72V2111, where m is the
full offset value. The default setting for this value is stated in the footnote
of Table 2.
See Figure 16, Programmable Almost-Full Flag Timing (IDT Standard and
FWFT Mode), for the relevant timing information.
PAF is synchronous and updated on the rising edge of WCLK.
PROGRAMMABLE ALMOST-EMPTY FLAG (PAE)
The Programmable Almost-Empty flag (PAE) will go LOW when the FIFO
reaches the almost-empty condition. In IDT Standard mode, PAE will go LOW
when there are n words or less in the FIFO.
The offset “n” is the empty offset
value. The default setting for this value is stated in the footnote of Table 1.
In FWFT mode, the PAE will go LOW when there are n+1 words or less
in the FIFO.
The default setting for this value is stated in the footnote of Table 2.
See Figure 17, Programmable Almost-Empty Flag Timing (IDT Standard
and FWFT Mode), for the relevant timing information.
PAE is synchronous and updated on the rising edge of RCLK.
HALF-FULL FLAG (HF)
This output indicates a half-full FIFO. The rising WCLK edge that fills the FIFO
beyond half-full sets HF LOW. The flag remains LOW until the difference between
the write and read pointers becomes less than or equal to half of the total depth
of the device; the rising RCLK edge that accomplishes this condition sets HF
HIGH.
In IDT Standard mode, if no reads are performed after reset (MRS or
PRS), HF will go LOW after (D/2 + 1) writes to the FIFO, where D = 262,144
for the
IDT72V2101 and
524,288 for the
IDT72V2111.
In FWFT mode, if no reads are performed after reset (MRS or PRS), HF
will go LOW after (D-1/2 + 2) writes to the FIFO, where D = 262,145 for the
IDT72V2101 and
524,289 for the
IDT72V2111.
See Figure 18, Half-Full Flag Timing (IDT Standard and FWFT Modes),
for the relevant timing information. Because HF is updated by both RCLK
and WCLK, it is considered asynchronous.
DATA OUTPUTS (Q0-Q8)
(Q0 - Q8) are data outputs for 9-bit wide data.

72V2101L10PFG

Mfr. #:
Manufacturer:
IDT
Description:
FIFO 256Kx9 SUPERSYNC FIFO, 3.3V
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union