AOT9N40

AOT9N40
400V,8A N-Channel MOSFET
General Description Product Summary
V
DS
I
D
(at V
GS
=10V)
8A
R
DS(ON)
(at V
GS
=10V)
< 0.8
100% UIS Tested
100% R
g
Tested
For Halogen Free add "L" suffix to part number:
AOT9N40L
Symbol
V
DS
V
GS
I
DM
I
AR
E
AR
E
AS
Peak diode recovery dv/dt dv/dt
T
J
, T
STG
T
L
Symbol
R
θ
JA
R
θCS
R
θJC
°C/W0.5
°C
Maximum Junction-to-Ambient
A
,D
°C/W65
300
Thermal Characteristics
mJ
Repetitive avalanche energy
C
5
Power Dissipation
B
V/ns
P
D
5
Junction and Storage Temperature Range
Derate above 25
o
C
T
C
=25°C
3.2
T
C
=100°C
V
Parameter
Absolute Maximum Ratings T
A
=25°C unless otherwise noted
500V@150
Drain-Source Voltage
AOT9N40
400
The AOT9N40 is fabricated using an advanced high
voltage MOSFET process that is designed to deliver high
levels of performance and robustness in popular AC-DC
applications.By providing low R
DS(on)
, C
iss
and C
rss
along
with guaranteed avalanche capability this parts can be
adopted quickly into new and existing offline power supply
designs.These parts are ideal for boost converters and
synchronous rectifiers for consumer, telecom, industrial
power supplies and LED backlighting.
Units
V±30Gate-Source Voltage
8
Continuous Drain
Current
T
C
=25°C
I
D
A
22
Pulsed Drain Current
C
Maximum Junction-to-Case
132
1
Avalanche Current
C
150
Single pulsed avalanche energy
G
300
Parameter
Maximum Case-to-sink
A
Maximum lead temperature for soldering
p
ur
p
ose, 1/8" from case for 5 seconds
°C/W
AOT9N40 Units
A
°C
mJ
W
W/
o
C
-55 to 150
0.95
G
D
S
G
D
S
Top View
TO-220
Rev 0: Dec 2010 www.aosmd.com Page 1 of 5
AOT9N40
Symbol Min Typ Max Units
400
500
BV
DSS
/TJ
0.4
V/
o
C
1
10
I
GSS
Gate-Body leakage current
±100
nΑ
V
GS(th)
Gate Threshold Voltage
3.4 4 4.5 V
R
DS(ON)
0.64 0.8
g
FS
8S
V
SD
0.75 1 V
I
S
Maximum Body-Diode Continuous Current 8 A
I
SM
22 A
C
iss
500 630 760 pF
C
oss
45 73 100 pF
C
rss
2 5.7 9 pF
R
g
1.2 2.6 4.0
Q
g
10 13.1 16 nC
Q
gs
3.9 nC
Q
gd
4.8 nC
t
D(on)
17 ns
t
r
52 ns
t
D(off)
25 ns
t
f
30 ns
t
rr
150 195 240
ns
Q
rr
1.5 1.9 2.3
µC
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Body Diode Reverse Recovery Time
Static Drain-Source On-Resistance V
GS
=10V, I
D
=4A
Reverse Transfer Capacitance
I
F
=8A,dI/dt=100A/µs,V
DS
=100V
V
GS
=0V, V
DS
=25V, f=1MHz
SWITCHING PARAMETERS
I
S
=1A,V
GS
=0V
V
DS
=40V, I
D
=4AForward Transconductance
Electrical Characteristics (T
J
=25°C unless otherwise noted)
STATIC PARAMETERS
Parameter Conditions
I
DSS
Zero Gate Voltage Drain Current
V
DS
=400V, V
GS
=0V
Diode Forward Voltage
V
DS
=5V
I
D
=250µA
V
DS
=320V, T
J
=125°C
Turn-Off DelayTime
V
GS
=10V, V
DS
=200V, I
D
=8A,
R
G
=25
Gate resistance V
GS
=0V, V
DS
=0V, f=1MHz
Turn-Off Fall Time
Total Gate Charge
V
GS
=10V, V
DS
=320V, I
D
=8A
Gate Source Charge
Gate Drain Charge
BV
DSS
Body Diode Reverse Recovery Charge
I
F
=8A,dI/dt=100A/µs,V
DS
=100V
Maximum Body-Diode Pulsed Current
Input Capacitance
Output Capacitance
Turn-On DelayTime
DYNAMIC PARAMETERS
Turn-On Rise Time
µA
V
DS
=0V, V
GS
=±30V
V
Drain-Source Breakdown Voltage
I
D
=250µA, V
GS
=0V, T
J
=25°C
I
D
=250µA, V
GS
=0V, T
J
=150°C
Zero Gate Voltage Drain Current ID=250µA, VGS=0V
A. The value of R
θJA
is measured with the device in a still air environment with T
A
=25°C.
B. The power dissipation P
D
is based on T
J(MAX)
=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation
limit for cases where additional heatsinking is used.
C. Repetitive rating, pulse width limited by junction temperature T
J(MAX)
=150°C, Ratings are based on low frequency and duty cycles to keep initial T
J
=25°C.
D. The R
θJA
is the sum of the thermal impedance from junction to case R
θJC
and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a
maximum junction temperature of T
J(MAX)
=150°C. The SOA curve provides a single pulse rating.
G. L=60mH, I
AS
=3.2A, V
DD
=150V, R
G
=25, Starting T
J
=25°C
Rev 0: Dec 2010 www.aosmd.com Page 2 of 5
AOT9N40
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTIC
40
1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
1.0E+02
0.0 0.2 0.4 0.6 0.8 1.0
V
SD
(Volts)
Figure 6: Body-Diode Characteristics (Note E)
I
S
(A)
25°C
125°C
0
4
8
12
16
0 5 10 15 20 25 30
V
DS
(Volts)
Fig 1: On-Region Characteristics
I
D
(A)
V
GS
=5.5V
6V
10V
6.5V
0.1
1
10
100
0246810
V
GS
(Volts)
Figure 2: Transfer Characteristics
I
D
(A)
-55°C
V
DS
=40V
25°C
125°C
0.0
0.4
0.8
1.2
1.6
2.0
0 3 6 9 12 15 18
I
D
(A)
Figure 3: On-Resistance vs. Drain Current and
Gate Voltage
R
DS(ON)
(
)
V
GS
=10V
0
0.5
1
1.5
2
2.5
3
-100 -50 0 50 100 150 200
Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
Normalized On-Resistance
V
GS
=10V
I
D
=4A
0.8
0.9
1
1.1
1.2
-100 -50 0 50 100 150 200
T
J
(°C)
Figure 5:Break Down vs. Junction Temparature
BV
DSS
(Normalized)
Rev 0: Dec 2010 www.aosmd.com Page 3 of 5

AOT9N40

Mfr. #:
Manufacturer:
Description:
MOSFET N-CH 400V 8A TO220
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet