Ceramic transient voltage suppressors B72500E2170S170
SMD multilayer varistor, E series CT0603S17ALCG2
PPD ML PD 2013-04-10
Please read Cautions and warnings and Page 10 of 13
Important notes at the end of this document.
Cautions and warnings
General
Some parts of this publication contain statements about the suitability of our ceramic transient voltage
suppressor (CTVS) components (multilayer varistors (MLVs), CeraDiodes, ESD/EMI filters, SMD disk
varistors (CU types), leaded transient voltage/ RFI suppressors (SHCV types)) for certain areas of
application, including recommendations about incorporation/design-in of these products into customer
applications. The statements are based on our knowledge of typical requirements often made of our
CTVS devices in the particular areas. We nevertheless expressly point out that such statements
cannot be regarded as binding statements about the suitability of our CTVS components for a
particular customer application. As a rule, EPCOS is either unfamiliar with individual customer
applications or less familiar with them than the customers themselves. For these reasons, it is always
incumbent on the customer to check and decide whether the CTVS devices with the properties
described in the product specification are suitable for use in a particular customer application.
Do not use EPCOS CTVS components for purposes not identified in our specifications,
application notes and data books.
Ensure the suitability of a CTVS in particular by testing it for reliability during design-in.
Always evaluate a CTVS component under worst-case conditions.
Pay special attention to the reliability of CTVS devices intended for use in safety-critical
applications (e.g. medical equipment, automotive, spacecraft, nuclear power plant).
Design notes
Always connect a CTVS in parallel with the electronic circuit to be protected.
Consider maximum rated power dissipation if a CTVS has insufficient time to cool down
between a number of pulses occurring within a specified isolated time period. Ensure that
electrical characteristics do not degrade.
Consider derating at higher operating temperatures. Choose the highest voltage class
compatible with derating at higher temperatures.
Surge currents beyond specified values will puncture a CTVS. In extreme cases a CTVS will
burst.
If steep surge current edges are to be expected, make sure your design is as low-inductance
as possible.
In some cases the malfunctioning of passive electronic components or failure before the end
of their service life cannot be completely ruled out in the current state of the art, even if they
are operated as specified. In applications requiring a very high level of operational safety and
especially when the malfunction or failure of a passive electronic component could endanger
human life or health (e.g. in accident prevention, life-saving systems, or automotive battery
line applications such as clamp 30), ensure by suitable design of the application or other
measures (e.g. installation of protective circuitry or redundancy) that no injury or damage is
sustained by third parties in the event of such a malfunction or failure. Only use CTVS
components from the AUTO series in safety-relevant applications.
Specified values only apply to CTVS components that have not been subject to prior electrical,
mechanical or thermal damage. The use of CTVS devices in line-to-ground applications is
therefore not advisable, and it is only allowed together with safety countermeasures like
thermal fuses.
Ceramic transient voltage suppressors B72500E2170S170
SMD multilayer varistor, E series CT0603S17ALCG2
PPD ML PD 2013-04-10
Please read Cautions and warnings and Page 11 of 13
Important notes at the end of this document.
Storage
Only store CTVS in their original packaging. Do not open the package before storage.
Storage conditions in original packaging: temperature 25 to +45°C, relative humidity 75%
annual average, maximum 95%, dew precipitation is inadmissible.
Do not store CTVS devices where they are exposed to heat or direct sunlight. Otherwise the
packaging material may be deformed or CTVS may stick together, causing problems during
mounting.
Avoid contamination of the CTVS surface during storage, handling and processing.
Avoid storing CTVS devices in harmful environments where they are exposed to corrosive
gases for example (SO
x
, Cl).
Use CTVS as soon as possible after opening factory seals such as polyvinyl-sealed packages.
Solder CTVS components after shipment from EPCOS within the time specified:
o CTVS with Ni barrier termination, 12 months
o CTVS with AgPd termination, 6 months
o SHCV and CU series, 24 months
Handling
Do not drop CTVS components and allow them to be chipped.
Do not touch CTVS with your bare hands - gloves are recommended.
Avoid contamination of the CTVS surface during handling.
Mounting
When CTVS devices are encapsulated with sealing material or overmolded with plastic
material, be sure to observe the precautions in “Mounting instructions”, “Sealing, potting and
overmolding”.
Make sure an electrode is not scratched before, during or after the mounting process.
Make sure contacts and housings used for assembly with CTVS components are clean before
mounting.
The surface temperature of an operating CTVS can be higher. Ensure that adjacent
components are placed at a sufficient distance from a CTVS to allow proper cooling.
Avoid contamination of the CTVS surface during processing.
Multilayer varistors (MLVs) with AgPd termination are not approved for lead-free soldering.
Soldering
Complete removal of flux is recommended to avoid surface contamination that can result in an
instable and/or high leakage current.
Use resin-type or non-activated flux.
Bear in mind that insufficient preheating may cause ceramic cracks.
Rapid cooling by dipping in solvent is not recommended, otherwise a component may crack.
Ceramic transient voltage suppressors B72500E2170S170
SMD multilayer varistor, E series CT0603S17ALCG2
PPD ML PD 2013-04-10
Please read Cautions and warnings and Page 12 of 13
Important notes at the end of this document.
Conductive adhesive gluing
Only multilayer varistors (MLVs) with an AgPd termination are approved for conductive
adhesive gluing.
Operation
Use CTVS only within the specified operating temperature range.
Use CTVS only within specified voltage and current ranges.
Environmental conditions must not harm a CTVS. Only use them in normal atmospheric
conditions. Reducing the atmosphere (e.g. hydrogen or nitrogen atmosphere) is prohibited.
Prevent a CTVS from contacting liquids and solvents. Make sure that no water enters a CTVS
(e.g. through plug terminals).
Avoid dewing and condensation.
EPCOS CTVS components are mainly designed for encased applications. Under all
circumstances avoid exposure to:
o direct sunlight
o rain or condensation
o steam, saline spray
o corrosive gases
o atmosphere with reduced oxygen content
EPCOS CTVS devices are not suitable for switching applications or voltage stabilization where
static power dissipation is required.
Multilayer varistors (MLVs) are designed for ESD protection and transient suppression.
CeraDiodes are designed for ESD protection only, ESD/EMI filters are designed for ESD and
EMI protection only.
This listing does not claim to be complete, but merely reflects the experience of EPCOS AG.

B72500E2170S170

Mfr. #:
Manufacturer:
EPCOS / TDK
Description:
Varistors 17Vrms 30A CT0603S17ALCG2
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union

Products related to this Datasheet