6.42
16
IDT71V25761 128K x 36, 3.3V Synchronous SRAMs with
2.5V I/O, Pipelined Outputs, Burst Counter, Single Cycle Deselect Commercial and Industrial Temperature Ranges
Timing Waveform of Sleep (ZZ) and Power-Down Modes
(1,2,3)
t
C
Y
C
t
S
S
t
C
L
t
C
H
t
H
A
t
S
A
t
S
C
t
H
C
t
O
E
t
O
L
Z
t
H
S
C
L
K
A
D
S
P
A
D
S
C
A
D
D
R
E
S
S
G
W
C
E
,
C
S
1
A
D
V
D
A
T
A
O
U
T
O
E
Z
Z
S
i
n
g
l
e
R
e
a
d
S
n
o
o
z
e
M
o
d
e
t
Z
Z
P
W
5
2
9
7
d
r
w
1
2
O
1
(
A
x
)
A
x
(
N
o
t
e
4
)
t
Z
Z
R
A
z
,
NOTES:
1. Device must power up in deselected Mode.
2. LBO is Don't Care for this cycle.
3. It is not necessary to retain the state of the input registers throughout the Power-down cycle.
4. CS
0 timing transitions are identical but inverted to the CE and CS1 signals. For example, when CE and CS1 are LOW on this waveform, CS0 is HIGH.
6.42
IDT71V25761 128K x 36, 3.3V Synchronous SRAMs with
2.5V I/O, Pipelined Outputs, Burst Counter, Single Cycle Deselect Commercial and Industrial Temperature Ranges
17
CLK
ADSP
GW, BW E, BW x
CE, CS
1
CS
0
ADDRESS
ADSC
DATA
OUT
OE
Av Aw Ax Ay Az
(Av) (Aw) (Ax) (Ay)
5297 drw 14
,
Non-Burst Read Cycle Timing Waveform
NOTES:
1. ZZ input is LOW, ADV is HIGH and LBO is Don't Care for this cycle.
2. (Ax) represents the data for address Ax, etc.
3. For read cycles, ADSP and ADSC function identically and are therefore interchangable.
NOTES:
1. ZZ input is LOW, ADV and OE are HIGH, and LBO is Don't Care for this cycle.
2. (Ax) represents the data for address Ax, etc.
3. Although only GW writes are shown, the functionality of BWE and BWx together is the same as GW.
4. For write cycles, ADSP and ADSC have different limitations.
Non-Burst Write Cycle Timing Waveform
CLK
ADSP
GW
CE, CS
1
CS
0
ADDRESS
ADSC
DATA
IN
Av Aw Ax AzAy
(Av) (Aw) (Ax) (Az)(Ay)
5297 drw 15
,
6.42
18
IDT71V25761 128K x 36, 3.3V Synchronous SRAMs with
2.5V I/O, Pipelined Outputs, Burst Counter, Single Cycle Deselect Commercial and Industrial Temperature Ranges
JTAG Interface Specification (SA Version only)
TCK
Device Inputs
(1)
/
TDI/TMS
Device Outputs
(2)
/
TDO
TRST
(
3)
t
JCD
t
JDC
t
JRST
t
JS
t
JH
t
JCYC
t
JRSR
t
JF
t
JCL
t
JR
t
JCH
M5297 drw 01
Symbol Parameter Min. Max. Units
t
JCYC
JTAG Clock Input Period 100
____
ns
t
JCH
JTAG Clock HIGH 40
____
ns
t
JCL
JTAG Clock Low 40
____
ns
t
JR
JTAG Clock Rise Time
____
5
(1)
ns
t
JF
JTAG Clock Fall Time
____
5
(1)
ns
t
JRST
JTAG Reset 50
____
ns
t
JRSR
JTAG Reset Recovery 50
____
ns
t
JCD
JTAG Data Output
____
20 ns
t
JDC
JTAG Data Output Hold 0
____
ns
t
JS
JTAG Setup 25
____
ns
t
JH
JTAG Hold 25
____
ns
I5297 tbl 01
Register Name Bit Size
Instruction (IR) 4
Bypass (BYR) 1
JTAG Identification (JIDR) 32
Boundary Scan (BSR) Note (1)
I5297 tbl 03
NOTES:
1. Device inputs = All device inputs except TDI, TMS and TRST.
2. Device outputs = All device outputs except TDO.
3. During power up, TRST could be driven low or not be used since the JTAG circuit resets automatically. TRST is an optional JTAG reset.
NOTE:
1. The Boundary Scan Descriptive Language (BSDL) file for this device is available
by contacting your local IDT sales representative.
JTAG AC Electrical
Characteristics
(1,2,3,4)
Scan Register Sizes
NOTES:
1. Guaranteed by design.
2. AC Test Load (Fig. 1) on external output signals.
3. Refer to AC Test Conditions stated earlier in this document.
4. JTAG operations occur at one speed (10MHz). The base device may run at any speed specified in this datasheet.

IDT71V25761S166PF8

Mfr. #:
Manufacturer:
Description:
IC SRAM 4.5M PARALLEL 100TQFP
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union