Lattice Semiconductor LA-ispMACH 4000V/Z Automotive Family Data Sheet
4
Figure 3. AND Array
Enhanced Logic Allocator
Within the logic allocator, product terms are allocated to macrocells in product term clusters. Each product term
cluster is associated with a macrocell. The cluster size for the LA-ispMACH 4000V/Z automotive family is 4+1 (total
5) product terms. The software automatically considers the availability and distribution of product term clusters as it
fits the functions within a GLB. The logic allocator is designed to provide three speed paths: 5-PT fast bypass path,
20-PT Speed Locking path and an up to 80-PT path. The availability of these three paths lets designers trade tim-
ing variability for increased performance.
The enhanced Logic Allocator of the LA-ispMACH 4000V/Z automotive family consists of the following blocks:
Product Term Allocator
Cluster Allocator
Wide Steering Logic
Figure 4 shows a macrocell slice of the Logic Allocator. There are 16 such slices in the GLB.
Figure 4. Macrocell Slice
PT0
PT1
Cluster 0
PT2
PT3
PT4
In[0]
In[34]
In[35]
Note:
Indicates programmable fuse.
PT80
PT81
PT82
Shared PT Clock
Shared PT Initialization
Shared PTOE
PT76
PT77
PT78
PT79
PT75
Cluster 15
to
n+1
to
n-1
to
n-2
from
n-1
from
n-4
from
n+2
from
n+1
5-PT
From
n-4
1-80
PTs
To n+4
Fast 5-PT
Path
To XOR (MC)
Cluster
Individual Product
Term Allocator
Cluster
Allocator
SuperWIDE™
Steering Logic
n
Lattice Semiconductor LA-ispMACH 4000V/Z Automotive Family Data Sheet
5
Product Term Allocator
The product term allocator assigns product terms from a cluster to either logic or control applications as required
by the design being implemented. Product terms that are used as logic are steered into a 5-input OR gate associ-
ated with the cluster. Product terms that used for control are steered either to the macrocell or I/O cell associated
with the cluster. Table 3 shows the available functions for each of the five product terms in the cluster. The OR gate
output connects to the associated I/O cell, providing a fast path for narrow combinatorial functions, and to the logic
allocator.
Table 3. Individual PT Steering
Cluster Allocator
The cluster allocator allows clusters to be steered to neighboring macrocells, thus allowing the creation of functions
with more product terms. Table 4 shows which clusters can be steered to which macrocells. Used in this manner,
the cluster allocator can be used to form functions of up to 20 product terms. Additionally, the cluster allocator
accepts inputs from the wide steering logic. Using these inputs, functions up to 80 product terms can be created.
Table 4. Available Clusters for Each Macrocell
Wide Steering Logic
The wide steering logic allows the output of the cluster allocator n to be connected to the input of the cluster alloca-
tor
n
+4. Thus, cluster chains can be formed with up to 80 product terms, supporting wide product term functions
and allowing performance to be increased through a single GLB implementation. Table 5 shows the product term
chains.
Product Term Logic Control
PT
n
Logic PT Single PT for XOR/OR
PT
n
+1 Logic PT Individual Clock (PT Clock)
PT
n
+2 Logic PT Individual Initialization or Individual Clock Enable (PT Initialization/CE)
PT
n
+3 Logic PT Individual Initialization (PT Initialization)
PT
n
+4 Logic PT Individual OE (PTOE)
Macrocell Available Clusters
M0 C0C1C2
M1 C0 C1 C2 C3
M2 C1 C2 C3 C4
M3 C2 C3 C4 C5
M4 C3 C4 C5 C6
M5 C4 C5 C6 C7
M6 C5 C6 C7 C8
M7 C6 C7 C8 C9
M8 C7 C8 C9 C10
M9 C8 C9 C10 C11
M10 C9 C10 C11 C12
M11 C10 C11 C12 C13
M12 C11 C12 C13 C14
M13 C12 C13 C14 C15
M14 C13 C14 C15
M15 C14 C15
Lattice Semiconductor LA-ispMACH 4000V/Z Automotive Family Data Sheet
6
Table 5. Product Term Expansion Capability
Every time the super cluster allocator is used, there is an incremental delay of t
EXP
. When the super cluster alloca-
tor is used, all destinations other than the one being steered to, are given the value of ground (i.e., if the super clus-
ter is steered to M (n+4), then M (n) is ground).
Macrocell
The 16 macrocells in the GLB are driven by the 16 outputs from the logic allocator. Each macrocell contains a pro-
grammable XOR gate, a programmable register/latch, along with routing for the logic and control functions.
Figure 5 shows a graphical representation of the macrocell. The macrocells feed the ORP and GRP. A direct input
from the I/O cell allows designers to use the macrocell to construct high-speed input registers. A programmable
delay in this path allows designers to choose between the fastest possible set-up time and zero hold time.
Figure 5. Macrocell
Enhanced Clock Multiplexer
The clock input to the flip-flop can select any of the four block clocks along with the shared PT clock, and true and
complement forms of the optional individual term clock. An 8:1 multiplexer structure is used to select the clock. The
eight sources for the clock multiplexer are as follows:
Block CLK0
Block CLK1
Block CLK2
Expansion Chains Macrocells Associated with Expansion Chain (with Wrap Around) Max PT/Macrocell
Chain-0 M0
M4
M8
M12
M0 75
Chain-1 M1
M5
M9
M13
M1 80
Chain-2 M2
M6
M10
M14
M2 75
Chain-3 M3
M7
M11
M15
M3 70
Single PT
Block CLK0
Block CLK1
Block CLK2
Block CLK3
PT Clock (optional)
Shared PT Clock
CE
D/T/L Q
RP
Shared PT Initialization
PT Initialization/CE (optional)
PT Initialization (optional)
From Logic Allocator
Power-up
Initialization
To ORP
To GRP
From I/O Cell
Delay

LA4032V-75TN44E

Mfr. #:
Manufacturer:
Lattice
Description:
CPLD - Complex Programmable Logic Devices Auto Grade (AEC-Q100 ) ispMACH4032V
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union