AD7895
–9–
REV. 0
MICROPROCESSOR/MICROCONTROLLER INTERFACE
The AD7895 provides a three-wire serial interface that can be
used for connection to the serial ports of DSP processors and
microcontrollers. Figures 6 through 9 show the AD7895
interfaced to a number of different microcontrollers and DSP
processors. The AD7895 accepts an external serial clock, and
as a result, in all interfaces shown here, the processor/controller
is configured as the master, providing the serial clock with the
AD7895 configured as the slave in the system.
AD7895–8051 Interface
Figure 6 shows an interface between the AD7895 and the 8XL51
microcontroller. The 8XL51 is configured for its Mode 0 serial
interface mode. The diagram shows the simplest form of the
interface where the AD7895 is the only part connected to the
serial port of the 8XL51 and, therefore, no decoding of the
serial read operations is required.
AD7895
SDATA
SCLK
BUSY
P3.0
P3.1
8X51/L51
P1.2
OR
INT1
Figure 6. AD7895 to 8X51/L51 Interface
To chip select the AD7895 in systems where more than one
device is connected to the 8XL51’s serial port, a port bit
configured as an output, from one of the 8XL51’s parallel ports
can be used to gate on or off the serial clock to the AD7895. A
simple AND function on this port bit and the serial clock from
the 8XL51 will provide this function. The port bit should be
high to select the AD7895 and low when it is not selected.
The end of conversion is monitored by using the BUSY signal
that is shown in the interface diagram of Figure 6. The BUSY
line from the AD7895 is connected to the Port P1.2 of the
8XL51 so the BUSY line can be polled by the 8XL51. The BUSY
line can be connected to the INT1 line of the 8XL51 if an
interrupt driven system is preferred. These two options are
shown in the diagram.
Note also that the AD7895 outputs the MSB first during a read
operation, while the 8XL51 expects the LSB first. Therefore,
the data which is read into the serial buffer needs to be rear-
ranged before the correct data format from the AD7895 appears
in the accumulator.
The serial clock rate from the 8XL51 is limited to significantly
less than the allowable input serial clock frequency with which
the AD7895 can operate. As a result, the time to read data
from the part will actually be longer than the conversion time of
the part. This means that the AD7895 cannot run at its maximum
throughput rate when used with the 8XL51.
AD7895–68HC11/L11 Interface
An interface circuit between the AD7895 and the 68HC11/L11
microcontroller is shown in Figure 7. For the interface shown,
the 68L11 SPI port is used, and the 68L11 is configured in its
single-chip mode. The 68L11 is configured in the master mode
with its CPOL bit set to a logic zero and its CPHA bit set to a
logic one. As with the previous interface, the diagram shows the
simplest form of the interface where the AD7895 is the only part
connected to the serial port of the 68L11 and, therefore, no
decoding of the serial read operations is required.
AD7895
SDATA
SCLK
BUSY
SCK
MISO
68HC11/L11
PC2 OR
IRQ
Figure 7. AD7895 to 68HC11/L11 Interface
Once again, to chip select the AD7895 in systems where more
than one device is connected to the 68HC11’s serial port, a port
bit configured as an output from one of the 68HC11’s parallel
ports can be used to gate on or off the serial clock to the
AD7895. A simple AND function on this port bit and the serial
clock from the 68L11 will provide this function. The port bit
should be high to select the AD7895 and low when it is not
selected.
The end of conversion is monitored by using the BUSY signal
that is shown in the interface diagram of Figure 7. With the
BUSY line from the AD7895 connected to the Port PC0 of the
68HC11/L11, the BUSY line can be polled by the 68HC11/L11.
The BUSY line can be connected to the
IRQ line of the
68HC11/L11 if an interrupt driven system is preferred. These
two options are shown in the diagram.
The serial clock rate from the 68HC11/L11 is limited to
significantly less than the allowable input serial clock frequency
with which the AD7895 can operate. As a result, the time to
read data from the part will actually be longer than the conver-
sion time of the part. This means that the AD7895 cannot run
at its maximum throughput rate when used with the 68HC11/L11.
AD7895–ADSP-2103/5 Interface
An interface circuit between the AD7895 and the ADSP-2103/5
DSP processor is shown in Figure 8. In the interface shown, the
RFS1 output from the ADSP-2103/5s SPORT1 serial port is
used to gate the serial clock (SCLK1) of the ADSP-2103/5
before it is applied to the SCLK input of the AD7895. The
RFS1 output is configured for active high operation. The BUSY
line from the AD7895 is connected to the
IRQ2 line of the
ADSP-2103/5 so that at the end of conversion an interrupt is
generated telling the ADSP-2103/5 to initiate a read operation.
The interface ensures a noncontinuous clock for the AD7895’s
serial clock input with only sixteen serial clock pulses provided
and the serial clock line of the AD7895 remaining low between
data transfers. The SDATA line from the AD7895 is connected
to the DR1 line of the ADSP-2103/5’s serial port.
AD7895
–10–
REV. 0
AD7895
SDATA
SCLK
BUSY
SCLK1
DR1
ADSP-2103/5
IRQ2
RFS1
Figure 8. AD7896 to ADSP-2103 /5 Interface
The timing relationship between the SCLK1 and RFS1 outputs
of the ADSP-2103/5 are such that the delay between the rising
edge of the SCLK1 and the rising edge of an active high RFS1
is up to 30 ns. There is also a requirement that data must be
set up 10 ns prior to the falling edge of the SCLK1 to be read
correctly by the ADSP-2103/5. The data access time for the
AD7895 is 60 ns (5 V (A, B versions)) from the rising edge of
its SCLK input. Assuming a 10 ns propagation delay through
the external AND gate, the high time of the SCLK1 output of
the ADSP-2105 must be (30 + 60 +10 +10) ns, i.e., 110 ns.
This means that the serial clock frequency with which the
interface of Figure 8 can work is limited to 4.5 MHz. However,
there is an alternative method that allows for the ADSP-2105
SCLK1 to run at 5 MHz (the max serial clock frequency of the
SCLK1 output). The arrangement occurs when the first leading
zero of the data stream from the AD7895 cannot be guaranteed
to be clocked into the ADSP-2105 due to the combined delay of
the RFS signal and the data access time of the AD7895. In most
cases, this is acceptable because there will still be three leading
zeros followed by the 12 data bits. For the ADSP-2103, the
SCLK1 frequency will need to be limited to < 4 MHz to
account for the 100 ns data access time of the AD7895.
Another alternative scheme is to configure the ADSP-2103/5 so
that it accepts an external noncontinuous serial clock. In this
case, an external noncontinuous serial clock is provided that
drives the serial clock inputs of both the ADSP-2103/5 and the
AD7895. In this scheme, the serial clock frequency is limited to
15 MHz by the AD7895.
AD7895–DSP56002/L002 Interface
Figure 9 shows an interface circuit between the AD7895 and the
DSP56002/L002 DSP processor. The DSP56002/L002 is
configured for normal mode asynchronous operation with gated
clock. It is also set up for a 16-bit word with SCK as gated
clock output. In this mode, the DSP56002/L002 provides
sixteen serial clock pulses to the AD7895 in a serial read
operation. Because the DSP56002/L002 assumes valid data on
the first falling edge of SCK, the interface is simply two-wire as
shown in Figure 9.
AD7895
SDATA
SCLK
BUSY
SCK
SDR
DSP56002/L002
MODA / IRQA
Figure 9. AD7895 to DSP56002/L002 Interface
Because the BUSY line from the AD7895 is connected to the
MODA/
IRQA input of the DSP56002/L002, an interrupt will
be generated at the end of conversion. This ensures that the
read operation will take place after conversion is finished.
AD7895 PERFORMANCE
Linearity
The linearity of the AD7895 is determined by the on-chip
12-bit D/A converter. This is a segmented DAC that is laser
trimmed for 12-bit integral linearity and differential linearity.
Typical relative accuracy numbers for the part are ±1/4 LSB
while the typical DNL errors are ±1/2 LSB.
Noise
In an A/D converter, noise exhibits itself as code uncertainty in
dc applications and as the noise floor (in an FFT, for example)
in ac applications. In a sampling A/D converter like the AD7895,
all information about the analog input appears in the baseband
from dc to 1/2 the sampling frequency. The input bandwidth of
the track/hold exceeds the Nyquist bandwidth and, therefore, an
antialiasing filter should be used to remove unwanted signals above
f
S
/2 in the input signal in applications where such signals exist.
Figure 10 shows a histogram plot for 8192 conversions of a dc
input using the AD7895. The analog input was set at the center
of a code transition. It can be seen that almost all the codes
appear in the one output bin, indicating very good noise
performance from the ADC.
957 962958 959 960 961
0
4000
3000
2000
1000
6000
5000
7000
8000
9000
Figure 10. Histogram of 8192 Conversions of a DC Input
In this case where the output data read for the device occurs
during conversion, this has the effect of injecting noise onto the
die while bit decisions are being made, and this increases the
noise generated by the AD7895. A histogram plot for 8192
conversions of the same dc input would show a larger spread of
codes with the rms noise for the AD7895 increasing. This effect
will vary depending on where the serial clock edges appear with
respect to the bit trials of the conversion process. It is possible
to achieve the same level of performance when reading during
conversion as when reading after conversion, depending on the
relationship of the serial clock edges to the bit trial points.
AD7895
–11–
REV. 0
Dynamic Performance (Mode 1 Only)
With a combined conversion and acquisition time of 4.1 µs, the
AD7895 is ideal for wide bandwidth signal processing applica-
tions. These applications require information on the ADC’s
effect on the spectral content of the input signal. Signal to
(Noise + Distortion), Total Harmonic Distortion, Peak Har-
monic or Spurious Noise, and Intermodulation Distortion are
all specified. Figure 11 shows a typical FFT plot of a 10 kHz,
0 V to +5 V input after being digitized by the AD7895 operating
at a 198.656 kHz sampling rate. The Signal to (Noise + Distor-
tion) Ratio is 73.04 dB, and the Total Harmonic Distortion is
–84.91 dB.
The formula for Signal to (Noise + Distortion) Ratio (see
Terminology section) is related to the resolution or number of
bits in the converter. Rewriting the formula, below, gives a
measure of performance expressed in effective number of bits (N):
N = (SNR 1.76)/6.02
where SNR is Signal to (Noise + Distortion) Ratio.
–0
–120
0 9.9k10k 30k 50k 70k 90k
–20
–40
–60
–80
–100
–10
–30
–50
–70
–90
–110
F
SAMPLE
= 198656
F
IN
= 10kHz
SNR = –73.04dB
THD = –84.91dB
Figure 11. AD7896 FFT Plot Effective Number of Bits
The effective number of bits for a device can be calculated from
its measured Signal to (Noise + Distortion) Ratio. Figure 12
shows a typical plot of effective number of bits versus frequency
for the AD7895 from dc to f
SAMPLING
/2. The sampling frequency
is 198.656 kHz. The plot shows that the AD7895 converts an
input sine wave of 10 kHz to an effective numbers of bits of
11.84, which equates to a Signal to (Noise + Distortion) level of
73.04 dB.
0 1000200 400 600 800
10.0
11.4
11.2
11.0
10.8
11.8
11.6
12.0
10.6
10.4
FREQUENCY – kHz
ENOB
10.2
Figure 12. Effective Number of Bits vs. Frequency
Power Considerations
In the automatic power-down mode, then, the part may be
operated at a sample rate that is considerably less than
100 kHz. In this case, the power consumption will be reduced
and will depend on the sample rate. Figure 13 shows a graph
of the power consumption versus sampling rates from 100 Hz to
90 kHz in the automatic power-down mode. The conditions
are 5 V supply 25°C, serial clock frequency of 8.33 MHz, and
the data was read after conversion.
0.1 9010 20 30 40
0
5
4
3
2
7
6
8
1
FREQUENCY – kHz
POWER – mW
50 60 70 80
10
9
11
Figure 13. Power vs. Sample Rate in Auto Power-Down
Mode

AD7895BRZ-10

Mfr. #:
Manufacturer:
Analog Devices Inc.
Description:
Analog to Digital Converters - ADC Bipolar Input 5V 12B Serial 3.8uS
Lifecycle:
New from this manufacturer.
Delivery:
DHL FedEx Ups TNT EMS
Payment:
T/T Paypal Visa MoneyGram Western Union